Skip to main content
Log in

Precision black body model at a temperature range of 200–450 K: metrological assurance for optical-electronic equipment for remote sensing of the Earth in the infrared range of the spectrum

  • Published:
Measurement Techniques Aims and scope

Abstract

We discuss challenges in radiometric calibration of optical-electronic equipment for Earth remote sensing (ERS) over a wide range of spectral radiances. An alternative method is presented to transmit a spectral radiance unit from a reference source (black body model, BBM) at the phase transition temperature of pure metals to optical-electronic equipment for ERS in the infrared range above 2.5 pm. The method is based on the stepwise transfer of a spectral radiance unit from a reference source through a precision model of a black body with a high emissivity level and wide temperature range identical to the temperature range of a wide-aperture BBM with a range of spectral radiance required for calibrating optical-electronic equipment for ERS. A precision BBM PMBB-60m with an output aperture with a diameter of 30 mm is developed, investigated, and calibrated in the temperature range of 200–450 K. The calculated value of the effective emissivity of PMBB-60m with the cavity coated with Aeroglaze Z306 paint is 0.9997. The composition and design of PMBB-60m are described. Such a precision BBM can operate both in vacuum and under conditions of inert gas or atmospheric pressure. The metrological characteristics of PMBB-60m, obtained by transferring a temperature unit from the State Standard of the zero bit of a temperature unit in the range of 0 °C–3000 °C 3.1.ZZA.0020.2015 using a comparator based on a TRT II precision pyrometer (Heitronics Infrarot Messtechnik GmbH, Germany) are presented. The correction to the PMBB-60m temperature readings in the temperature range of 223.15–450.15 K did not exceed 39 mK based on the results of calibration in the temperature range of 220–450 K. The results of calculating the expanded uncertainty in the temperature range of 223.15–450.15 K did not exceed 1 K. The instability values of the temperature maintenance of PMBB-60m, measured in steps of 10 s for 15 min, did not exceed 15 mK in the considered temperature range. The calculation results of the spectral effective emissivity of PMBB-60m using the STEEP3 program are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. GOST 8.395-80. State System for Ensuring Uniform Measurement. Normal Measurement Conditions during Verification. General Requirements.

  2. STEEP3, version 1.3. User’s Guide (Virial, Inc., NY, 2000) [site]. URL: https://www.virial.com/zip/STEEP320_Manual.zip (reference date: 08/08/2023).

  3. GOST R 8.566-2012. State System for Ensuring Uniform Measurement. Emitters in the Form of Absolute Black Body Models. Verification and Calibration Procedure.

References

  1. S. P. Morozova, V. I. Sapritskiy, V. R. Gavrilov, A. Yu. Dunaev, V. S. Bormashov, Yu. M. Gektin, S. M. Zorin, and D. O. Trofimov, Methods and means of preflight radiometric calibration of optoelectronic equipment for Earth observation in the infrared spectral range, Systems of Observation, Monitoring and the Earth Remote Sensing, materials XVII Scientific and Technical Conference, Kaluga, Manuscript Publ., 242–247 (2021)

  2. Monte, C., Gutschwager, B., Morozova, S.P., Hollandt, J.: Int J Thermophys 30, 203–219 (2009). https://doi.org/10.1007/s10765-008-0442-9

    Article  ADS  Google Scholar 

  3. Khlevnoy, B.B., Grigor’eva, I.A., Ivashin, E.A., Ogarev, S.A., Sapritsky, V.I.: Meas. Techn. 61, 1159–1165 (2019). https://doi.org/10.1007/s11018-019-01564-7

    Article  Google Scholar 

  4. Grigoryeva, I.A., Khlevnoy, B.B., Solodilov, M.V.: Int J Thermophys 38, 69 (2017). https://doi.org/10.1007/s10765-017-2203-0

    Article  ADS  Google Scholar 

  5. Khlevnoy, B.B., Sil’d, Y.A., Matveev, M.S., Grigorieva, I.A., Fuksov, V.M.: Meas. Techn. 56, 72–78 (2013). https://doi.org/10.1007/s11018-013-0161-x

    Article  Google Scholar 

  6. Morozova, S.P., Katysheva, A.A., Panfilov, A.S., Krutikov, V.N., Lisyansky, B.E., Sapritsky, V.I., Parfentyev, N.A., Makolkin, E.V., Mitrofanov, B.D.: Int J Thermophys 35, 1330–1340 (2014). https://doi.org/10.1007/s10765-014-1721-2

    Article  ADS  Google Scholar 

  7. Ivanov, V.S., Lisiansky, B.E., Morozova, S.P., Sapritsky, V.I., Melenevsky, U.A.Y.X.L., Liang, P.: Metrologia 37(5), 599–602 (2000). https://doi.org/10.1088/0026-1394/37/5Z58

    Article  ADS  Google Scholar 

  8. Persky, M.J.: Rev. Sci. Instrum. 70(5), 2193–2217 (1999). https://doi.org/10.1063/11149739

    Article  ADS  Google Scholar 

  9. F. A. Best, H. E. Revercomb, R. O. Knuteson, D. C. Tobin, S. D. Ellington, M. W. Werner, D. P. Adler, R. K. Garcia, J. K. Taylor, N. N. Ciganovich, W. L. Smith Sr., G. E. Bingham, J. D. Elwell, and D. K. Scott, Proc. SPIE 5655, Multispectral and Hyperspectral Remote Sensing Instruments and Applications II (20 January, 2005), https://doi.org/10.1117/12.579017.

  10. Sapritsky, V.I., Prokhorov, A.V.: Metrologia 29, 9–14 (1992). https://doi.org/10.1088/0026-1394/29/1/003

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. L. Dovgilov.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Translated from Izmeritel’naya Tekhnika, No. 11, pp. 52–57, November, 2023. Russian DOI: https://doi.org/10.32446/0368-1025it.2023-11-52-57

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Original article submitted September 6, 2023. Original article reviewed September 19, 2023. Original article accepted October 9, 2023.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dovgilov, N.L., Morozova, S.P., Alekseev, S.V. et al. Precision black body model at a temperature range of 200–450 K: metrological assurance for optical-electronic equipment for remote sensing of the Earth in the infrared range of the spectrum. Meas Tech (2024). https://doi.org/10.1007/s11018-024-02302-4

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11018-024-02302-4

Keywords

Navigation