Skip to main content
Log in

Analysis of roughness profiles of steel surfaces after electroerosion machining

  • Published:
Measurement Techniques Aims and scope

Abstract

Electroerosion machining is one of the most common and effective methods for manufacturing difficult-to-machine parts. The dependence of the surface characteristics of heat-resistant steel samples on the parameters of electroerosion processing has been studied. Using an electroerosion machine, samples were processed in various modes according to a full-factorial experimental design, allowing all possible combinations of processing parameters to be implemented. To assess the condition of the machined surface of all samples, surface roughness was measured in the longitudinal and transverse processing directions. The results of an analysis of the obtained surface roughness profiles are presented. The previously drawn conclusion that the average height of irregularities increases with increasing pulse current has been confirmed. Moreover, it has been established that the fractal dimension of the profile changes in the scale range of 20–500 microns, calculated using the “area—scale” function. A spectral analysis of microroughness was performed based on the accumulated spectral power of the surface roughness profile of steel samples, which revealed that the spatial frequencies of no more than 0.05 μm−1 primarily contributes to microroughness formation. The obtained results enabled to obtain surfaces with the necessary optical and adhesive properties by selecting parameters for processing samples on electroerosion equipment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. GOST 2789-73. Surface Roughness. Parameters and Characteristics.

  2. GOST R ISO 4287-2014. Geometrical Product Specifications (GPS). Surface Structure. Profile Method. Terms, Definitions, and Parameters of Surface Structure.

  3. GOST R ISO 25178-2-2014. Geometric Geometrical Product Specifications (GPS). Surface Structure. Area. Part 2. Terms, Definitions and Surface Structure Parameters.

References

  1. Grigoriev, S.N., Teleshevskii, V.I.: Meas. Techn., 54. No 7, 744–749 (2011). https://doi.org/10.1007/s11018-011-9798-5

    Article  Google Scholar 

  2. Grigoriev, S.N., Masterenko, D.A., Teleshevskii, V.I., Emelyanov, P.N.: Meas. Techn., 55. No 11, 1311–1315 (2013). https://doi.org/10.1007/s11018-013-0126-0

    Article  Google Scholar 

  3. Grigoriev, S.N., Martinov, G.M.: Procedia Cirp 1(1), 238–243 (2012). https://doi.org/10.1016/j.procir.2012.04.043

    Article  Google Scholar 

  4. Grigoriev, S.N., Martinov, G.M.: Procedia Cirp (2016). https://doi.org/10.1016/j.procir.2016.04.036

    Article  Google Scholar 

  5. Majumdar, A., Bhushan, B.: Characterization and Modeling of Surface Roughness and Contact Mechanics, Handbook of Micro/Nano Tribology. CRC Press (1999)

    Google Scholar 

  6. Fedotov, A.A.: “Power-density spectrum as the surface roughness characteristic,” Fotonika. No 6, 18–21 (2010)

    Google Scholar 

  7. Fedotov, A.A.: Study of the roughness of solid surfaces in relation to problems of tribology and fracture mechanics. vest. Nizhegorodsk. Univ. N. I. Lobachevskogo No. 4(4), 1825–1827 (2011)

    Google Scholar 

  8. Yastrebov, V.A., Durand, J., Proudhon, H., Cailletaud, G.: Comptes Rendus Mecanique. No 339(7), 473–490 (2011). https://doi.org/10.1016/j.crme.2011.05.006

    Article  Google Scholar 

  9. Maaboudallah, F., Atalla, N.: comput. Mech. No. 67(4), 1–19 (2021). https://doi.org/10.1007/s00466-021-02003-7

    Article  Google Scholar 

  10. Najah, M., Maaboudallah, F., Boucherit, M., Ferguson, M.: Tribol. Int. No 165(2), 107339 (2021). https://doi.org/10.1016/j.triboint.2021.107339

    Article  Google Scholar 

  11. Abramov, A.D.: Determination of a grinding finish roughness on the basis of analysis autocorrelation function. Izv. Samarsk. Nauch. Centra Ross. Akad. Nauk 10(3), 887–894 (2008)

    MathSciNet  Google Scholar 

  12. Orazbaev, B.D., Osovickij, A.N.: Calculation and experimental analysis of the characteristics of a surface roughness spectrum analyzer. Vestn. Rudn. Ser. Matem. Inform. Fiz. (4), 135–143 (2011)

  13. Ghodrati, S., Kandi, S.G., Mohseni, M.: J. Opt. Soc. Am. A 6(35), 998 (2018). https://doi.org/10.1364/JOSAA.35.000998

    Article  ADS  Google Scholar 

  14. Markov, B.N., Masterenko, D.A., Emelyanov, P.N., Teleshevskiy, V.I.: Meas. Techn., 63. No 8, 610–618 (2020). https://doi.org/10.1007/s11018-020-01830-z

    Article  Google Scholar 

  15. Bavykin, O.B., Vyacheslavova, O.F.: “Relationship of surface properties and its fractal dimensions,” Izv. MGTU MAMI, 1. No 1(15), 14–18 (2013)

    Google Scholar 

  16. Grigor’ev, A. Ya : Physics and Microgeometry of Technical Surfaces. Belorusskaya nauka, Minsk (2016)

    Google Scholar 

  17. M. V. Altajskij, V. V. Ivanov, S. A. Korenev, O. L. Orelovich, I. V. Puzynin, and V. V. Chernik, “Fractal structure formation on the surfaces of solids subjected to high intensity electron and ion treatment,” JINR Rapid Commun., No. 2(82), 37–46 (1997).

  18. Savenkov, G.G., Barakhtin, B.K.: Relation of the fractal dimension of the fracture surface with a set of standard tension characteristics of the material. J. Appl. Mech. Techn. Phys. 52(6), 997–1003 (2011). https://doi.org/10.1134/S0021894411060186

    Article  ADS  Google Scholar 

  19. Tihomirov, V.P., Izmerov, M.A.: Contact mechanics of fractal surfaces. vestn. Bryansk. Gos. Tekhnich. Univ. No. 1(45), 60–66 (2015)

    Google Scholar 

  20. J. Shen, Y. Gong, H. Meng and J. Yang, 4th International Conference on Energy Materials and Environment Engineering (ICEMEE 2018), 38, 04013 (2018). https://doi.org/10.1051/e3sconf/20183804013.

  21. Denisov, S.I., Vitrenko, A.N.: Features of light reflection from a fractal surface. Vestn. Sumgu 4(3), 38–42 (2001)

    Google Scholar 

  22. A. A. Potapov, A. V. Laktyun’kin, Proceedings of the International Scientific Conference “Emission and scattering of electromagnetic waves—IREMV-2007”, Taganrog, Russia, June 25–30, 2007, Taganrog, TTI YuFU Publ., 1, 435–440 (2007).

  23. E. K. Alidzhanov, Yu. D. Lantuh, and D. A. Razdobreev, Proceedings of the All-Russian Scientific and Methodological Conference “University complex as a regional center of education, science and culture”, 26–27 January 2023, Orenburg, Russia, 2865–2873 (2023).

  24. S. Ghodrati, M. Mohseni, and S. G. Kandi, The 6th International Color & Coating Congress, Tehran, Iran, November 10–12, 2015, available at: https://www.researchgate.net/profile/Mohsen-Mohseni/publication/288331767_Dependence_of_adhesion_strength_of_an_acrylic_clear_coat_on_fractal_dimension_of_abrasive_blasted_surfaces_using_image_processing/links/56a25a7e08ae232fb2019c67/Dependence-of-adhesion-strength-of-an-acrylic-clear-coat-on-fractal-dimension-of-abrasive-blasted-surfaces-using-image-processing.pdf (accessed: 07/19/2023).

  25. Kozlov, G.V., Dolbin, I.V.: Fractal model of the nanofiller structure affecting the degree of reinforcement of polyurethane-carbon nanotube nanocomposites. J. Appl. Mech. Tech. Phys. 59(3), 508–510 (2018). https://doi.org/10.1134/S002189441803015X

    Article  ADS  Google Scholar 

  26. T. Marquardt, A. Momber, “Subsequent mounting of brackets onto deteriorated coatings in a maritime or offshore environment using adhesives,” Proceedings of the 6th International Conference on Adhesive Bonding (AB 2021), July 2021, Porto, Portugal (2021).

  27. Valetov, V.A., Meduneckij, V.V.: Ensuring the quality of surfaces of parts using electrical erosion equipment. nauch.-tekhnich. Vestn. Informats. Tekhnol. Mekhan. Opt. No. 2(78), 113–116 (2012)

    Google Scholar 

  28. T. R. Ablyaz, Modern problems of science and education, No. 2 (2014), available at: https://science-education.ru/ru/article/view?id=12593 (accessed: 06/28/2023).

  29. Bashevskaya, O.S., Nikitin, A.A., Bushuev, S.V.: Metrological study of microprofile and roughness parameters of precision parts after electrical discharge machining. vestn. Mgtu “stankin” No. 1(32), 58–64 (2015)

    Google Scholar 

  30. Bashevskaya, O.S., Bushuev, S.V., Nikitin, A.A., Romash, E.V., Poduraev, Y.V.: Meas. Techn., 58. No 8, 860–863 (2015). https://doi.org/10.1007/s11018-015-0808-x

    Article  Google Scholar 

  31. Bashevskaya, O.S., Bushuev, S.V., Nikitin, A.A., Romash, E.V., Poduraev, Y.V.: Meas. Techn., 60. No 2, 128–133 (2017). https://doi.org/10.1007/s11018-017-1161-z

    Article  Google Scholar 

  32. P. A. Ivanov, E. V. Ramenskaya, V. D. Shaporev, N. F. Yankovskaya, and A. N. “Zhabinskaya, Influence of modes electrodischarge machining,” Current problems of aviation and astronautics: Collection of reports VI International Scientific and Practical Conference, in 3 volumes, ed. Yu. Yu. Loginov, Krasnoyarsk, Sibirskij gosudarstvennyj universitet nauki i tekhnologij im. akad. M. F Reshetneva Publ., 1, 10–12 (2020).

Download references

Funding

This work was supported financially by the Ministry of Science and Higher Education of the Russian Federation (project No. FSFS-2021-0003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. S. Skoptsov.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Translated from Izmeritel’naya Tekhnika, No. 9, pp. 38–45, September, 2023. Russian https://doi.org/10.32446/0368-1025it.2023-9-38-45

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Original article submitted July 24, 2023. Original article reviewed August 11, 2023. Original article accepted July August 12, 2023

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grigoriev, S.N., Masterenko, D.A. & Skoptsov, E.S. Analysis of roughness profiles of steel surfaces after electroerosion machining. Meas Tech 66, 679–689 (2023). https://doi.org/10.1007/s11018-024-02281-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11018-024-02281-6

Keywords

Navigation