Skip to main content
Log in

GET 133-2023 State Primary Special Standard for the unit of heat in the field of solution and reaction calorimetry

  • Published:
Measurement Techniques Aims and scope

Abstract

The article shows the need to develop methods and means of reproducing and transferring the unit of heat in the field of measuring the low heat of physicochemical interactions via isothermal titration calorimetry. The relevance of this work is attributable to the wide application of isothermal titration calorimeters implementing this method and the lack of standard metrological procedures and tools designed for metrological support. In order to ensure the uniformity and traceability of measurement in this field, the Calorimetry Laboratory of VNIIM conducted studies to expand the functional and measurement capabilities of GET 133-2012 State Primary Special Standard for the unit of heat in the field of solution and reaction calorimetry. In the course of work, a standard titration microcalorimeter was developed, studied, and included in the improved GET 133-2012; the titration microcalorimeter is designed to reproduce, maintain, and transfer the unit of heat in the field of measuring low heat in liquid media. The studies of the titration microcalorimeter confirmed the possibility of reproducing and transferring the unit of heat within the range of 100–5000 µJ with an expanded uncertainty of 1.2–8.6%. The improved GET 133-2012 having revised composition and new metrological characteristics was approved as GET 133-2023 State Primary Special Standard for the unit of heat in the field of solution and reaction calorimetry. The expansion of the standards base for isothermal titration calorimetry provided the basis for creating new metrological means of transferring the unit of heat in the field of solution and reaction calorimetry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Kabiri, M., Unsworth, L.D.: Biomacromolecules 15(10), 3463–3473 (2014). https://doi.org/10.1021/bm5004515

    Article  Google Scholar 

  2. Falconer, R.J., Penkova, A., Jelesarov, I., Collins, B.M.J.: J. Mol. Recognit. 23(5), 395–413 (2010). https://doi.org/10.1002/jmr.1025

    Article  Google Scholar 

  3. Falconer, R.J., Collins, B.M.: J. Mol. Recognit. 24(1), 1–16 (2011). https://doi.org/10.1002/jmr.1073

    Article  Google Scholar 

  4. Baranauskienė, L., Petrikaitė, V., Matulienė, J., Daumantas, M.: Int J Mol Sci 10(6), 2752–2762 (2009). https://doi.org/10.3390/ijms10062752

    Article  Google Scholar 

  5. Paketurytė, V., Linkuvienė, V., Krainer, G., Chen, W.-Y., Daumantas, M.: Eur. Biophys. J. 48, 139–152 (2019). https://doi.org/10.1007/s00249-018-1341-z

    Article  Google Scholar 

  6. Myszka, D.G., Abdiche, Y.N., Arisaka, F.: The ABRF-MIRG’02 Study: assembly state, thermodynamic, and kinetic analysis of an enzyme/inhibitor interaction. J. Biomol. Tech. 14(4), 247–269 (2003)

    Google Scholar 

  7. Velazquez-Campoy, A., Claro, B., Abian, O.: Eur. Biophys. J. 50, 429–451 (2021). https://doi.org/10.1007/s00249-021-01523-7

    Article  Google Scholar 

  8. Demarse, N.A., Quinn, C.F., Eggett, D.L.: Anal. Biochem. 417(2), 247–255 (2011). https://doi.org/10.1016/j.ab.2011.06.014

    Article  Google Scholar 

  9. Adão, R., Bai, G., Loh, W., Bastos, M.: J. Chem. Thermodyn. 52, 57–63 (2012). https://doi.org/10.1016/j.jct.2011.12.018

    Article  Google Scholar 

  10. Wadsö, I., Goldberg, R.N.: Pure Appl. Chem., 73. No 10, 1625–1639 (2001). https://doi.org/10.1351/pac200173101625

    Article  Google Scholar 

  11. Kantonen, S.A., Henriksen, N.M., Gilson, M.K.: Biochim. Biophys. Acta 1861(2), 485–498 (2017). https://doi.org/10.1016/j.bbagen.2016.09.002

    Article  Google Scholar 

  12. Nguyen, T.H., Rustenburg, A.S., Krimmer, S.G.: PLoS ONE 13(9), 1–26 (2018). https://doi.org/10.1371/journal.pone.0203224

    Article  Google Scholar 

  13. Hansen, L.D., Quinn, C.: Eur. Biophys. J. 48, 825–835 (2019). https://doi.org/10.1007/s00249-019-01399-8

    Article  Google Scholar 

  14. Tellinghuisen, J., Chodera, J.D.: Anal. Biochem. 414(2), 297–299 (2011). https://doi.org/10.1016/j.ab.2011.03.024

    Article  Google Scholar 

  15. Medoš, Ž., Čobanov, I., Bešter-Rogač, M., Šarac, B.: J. Therm. Anal. Calorim. 145, 87–96 (2021). https://doi.org/10.1007/s10973-020-09663-2

    Article  Google Scholar 

  16. Kolesov, V.P.: Osnovy Termokhimii [Fundamentals of Thermochemistry; in Russian. MSU Publ, Moscow (1996)

    Google Scholar 

  17. JCGM 100:2008. Evaluation of Measurement Data—Guide to the Expression of Uncertainty in Measurement, 1st ed., JCGM (2008).

  18. Christensen, J.J., Hansen, L.D., Izatt, R.M.: Handbook of Proton Ionization Heats. Wiley (1976)

    Google Scholar 

  19. Mishina, K.A.: Meas. Stand. Ref. Mater. 19(3), 31–43 (2023). https://doi.org/10.20915/2077-1177-2023-19-3-31-43

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. A. Mishina.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Translated from Izmeritel’naya Tekhnika, No. 9, pp. 11–17, September 2023. Russian DOI: https://doi.org/10.32446/0368-1025it.2023-9-11-17

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Original article submitted 06/26/2023. Accepted 09/10/2023

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mishina, K.A., Korchagina, E.N. & Kazartsev, I.V. GET 133-2023 State Primary Special Standard for the unit of heat in the field of solution and reaction calorimetry. Meas Tech 66, 647–655 (2023). https://doi.org/10.1007/s11018-024-02277-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11018-024-02277-2

Keywords

UDC

Navigation