Skip to main content
Log in

Temperature Measurement Methods in Microwave Heating Technologies

  • THERMOPHYSICAL MEASUREMENTS
  • Published:
Measurement Techniques Aims and scope

In industrial technology processes associated with heating processed material using microwave radiation, measuring equipment is required to control such material’s temperature. This article discusses temperature measurement methods in technological processes using microwave heating systems and investigates the main possibilities, disadvantages, and restrictions of applied contact and noncontact (optical) measurement methods. Moreover, requirements for temperature measurement systems under exposure to strong electromagnetic fields are reported. The possibilities and advantages of spectral pyrometry are especially noted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O. Morozov, A. Kargin, G. Savenko, et al., “Industrial application of MW heating,” Elektron. Nauka, Tekhnol., Biznes, No. 3, 2–6 (2010).

  2. S. Grundas, Advances in Induction and Microwave Heating of Mineral and Organic Materials, IntechOpen (2010), https://doi.org/10.5772/562.

  3. A. N. Magunov, Laser Thermometry of Solids, Fizmatlit, Moscow (2001).

  4. A. V. Arzhannikov, T. D. Akhmetov, and P. V. Kalinin, Stand for Research on Microwave Heating and Transformation of Substances, IYaF im. Budkera, Novosibirsk (2004).

  5. C. O. Kappe, Chem. Soc. Rev., 42, No. 12, 4977–4990 (2013), https://doi.org/10.1039/c3cs00010a.

    Article  Google Scholar 

  6. Yongguang Luo, Tianqi Liao, Xia Yu, et al., Green Proc. Synth., 9, No. 1, 97–106 (2020), https://doi.org/10.1515/gps-2020-0011.

    Article  Google Scholar 

  7. S. M. Bradshaw, E. J. van Wyk, and J. B. de Swardt, “Microwave heating principles and the application to the regeneration of granular activated carbon,” J. South Afr. Inst. Min. Metall., July/August, 201–210 (1998).

  8. M. Omran, T. Fabritius, E.-P. Heikkinen, and G. Chen, R. Soc. Open Sci., No. 4, (2017), https://doi.org/10.1098/rsos.170710.

  9. O. Wiedenmann, R. Ramakrishnan, P. Saal, et al., Adv. Radio Sci., 12, 21–28 (2014), https://doi.org/10.5194/ars-12-21-2014.

    Article  ADS  Google Scholar 

  10. Longzhi Li, Xiaowei Jiang, Huigang Wang, et al., J. Anal. Appl. Pyrol., 125, 318–327 (2017), https://doi.org/10.1016/jJaap.2017.03.009.

    Article  Google Scholar 

  11. A. G. Divin, S. V. Ponomarev, Methods and Means of Measurement, Testing and Control. Part 3, Izd. Tambov. Gos. Tekhn. Univ., Tambov (2013).

  12. B. Garcia-Banos, J. Reinosa, F. L. Penaranda-Foix, et al., Sci. Rep., 9, 10809 (2019), https://doi.org/10.1038/s41598-019-47296-0.

    Article  ADS  Google Scholar 

  13. E. Udda, Fiber Optic Sensors, Technosfera, Moscow (2008).

    Google Scholar 

  14. A. Ramirez, J. Hueso, R. Mallada, and J. Santamaria, Chem. Eng. J., 316, 50–60 (2017), https://doi.org/10.1016/j.cej.2017.01.077.

    Article  Google Scholar 

  15. V. Ramopoulos, G. Link, S. Soldatov, and J. Jelonnek, Int. J. Microw. Wirel. Technol., 10, Iss. 5–6, 709–716 (2018), https://doi.org/10.1017/S1759078718000727.

    Article  Google Scholar 

  16. T. Ano, F. Kishimoto, R. Sasaki, et al., Phys. Chem. Chem. Phys., 18, 13173–13179 (2016), https://doi.org/10.1039/c6cp02034h.

    Article  Google Scholar 

  17. R. Herskowits, P. Livshits, S. Stepanov, et al., Semicond. Sci. Technol., 22, No. 8, 863–869 (2007), https://doi.org/10.1088/0268-1242/22/8/006.

    Article  ADS  Google Scholar 

  18. E. Jerby, V. Dikhtyar, O. Aktushev, and U. Grosglick, Science, 298, Iss. 5593, 587–589 (2002), https://doi.org/10.1126/science.1077062.

    Article  ADS  Google Scholar 

  19. A. Amini, K. Ohno, T. Maeda, and K. Kunitomo, Sci. Rep., 8, 15023 (2018), https://doi.org/10.1038/s41598-018-33460-5.

    Article  ADS  Google Scholar 

  20. A. Mondal, A. Shukla, A. Upadhyaya, and D. Agrawal, Sci. Sinter., 42, Iss.2, 169–182 (2010), https://doi.org/10.2298/SOS1002169M.

    Article  Google Scholar 

  21. S. Hamzehlouia, J. Chaouki, J. Chem. Petrol. Eng., 52, Iss. 2, 201–210 (2018), https://doi.org/10.22059/JCHPE.2018.270160.1257.

    Article  Google Scholar 

  22. A. N. Magunov, Spectral Pyrometry, Fizmatlit, Moscow (2012).

  23. A. N. Magunov, B. A. Lapshinov, and A. V. Suvorinov, “Development of Instruments for Measuring the Temperature of Objects with Unknown Emissivity,” Innovatsii, No. 4 (198), 13–16 (2015).

  24. B. A. Lapshinov, A. V. Suvorinov, and N. I. Timchenko, “Determination of the temperature of an emitting object by spectral pyrometry,” Elektron. Nauka, Tekhnol., Biznes, No. 6, 116–119 (2018).

  25. B. A. Lapshinov and A. V. Mamontov, “Application of the method of spectral pyrometry under conditions of intense ultra-high-frequency electromagnetic fields,” Izmer. Tekhn., No. 9, 54–59 (2020), https://doi.org/10.32446/0368-1025it.2020-9-54-59.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. A. Lapshinov.

Additional information

Translated from Izmeritel’naya Tekhnika, No. 6, pp. 20–28, June, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lapshinov, B.A. Temperature Measurement Methods in Microwave Heating Technologies. Meas Tech 64, 453–462 (2021). https://doi.org/10.1007/s11018-021-01954-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11018-021-01954-w

Keywords

Navigation