Skip to main content

Ultrasonic Thermometry for Temperature Profiling of Heated Materials

  • Chapter
Advancement in Sensing Technology

Part of the book series: Smart Sensors, Measurement and Instrumentation ((SSMI,volume 1))

Abstract

In the fields of materials science and engineering, there are growing demands for monitoring temperature and its distribution of heated materials. This is basically because temperature is one of important factors that dominate material properties and related characteristics such as mechanical, electrical and chemical behaviours. In general, temperature monitoring is required for not only the surface but also the inside of heated materials. In this work, a new ultrasonic method for monitoring temperature gradients of materials during heating or cooling is presented. The method consists of ultrasonic pulse-echo measurements and an inverse analysis for determining one-dimensional temperature distributions along the direction of ultrasound propagation either inside or on the surface of heated materials. To demonstrate the practical feasibility of the method, several experiments with heated materials have been made and successful results of internal temperature profiling are obtained. In addition, non-contact methods with a laser ultrasonic technique for monitoring surface temperature distributions of heated materials are proposed and their potentials are demonstrated. Thus, it is highly expected that the ultrasonic thermometry is a promising means for on-line temperature profiling of industrial materials processed at elevated temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Degertekin, F.L., Pei, J., Khuri-Yakub, B.T., Saraswat, K.C.: In-situ acoustic temperature tomography of semiconductor wafers. Applied Physics Letters 64, 1338–1040 (1994)

    Google Scholar 

  2. Simon, C., Van Baren, P., Ebbini, E.: Two-dimensional temperature estimation using diagnostic ultrasound. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control 45(4), 1088–1099 (1998)

    Article  Google Scholar 

  3. Mizutani, K., Funakoshi, A., Nagai, K., Harakawa, K.: Acoustic measurement of temperature distribution in a room using a small number of transducers. Japanese Journal of Applied Physics 38, 3131–3134 (1999)

    Article  Google Scholar 

  4. Mizutani, K., Kawabe, S., Saito, I., Masuyama, H.: Measurement of temperature distribution using acoustic reflector. Japanese Journal of Applied Physics 45, 4516–4520 (2006)

    Article  Google Scholar 

  5. Kudo, K., Mizutani, K., Akagami, T., Murayama, R.: Temperature distribution in a rectangular space measured by a small number of transducers and reconstructed from reflected sounds. Japanese Journal of Applied Physics 42, 3189–3193 (2003)

    Article  Google Scholar 

  6. Kudo, K., Mizutani, K.: Temperature measurement using acoustic reflectors. Japanese Journal of Applied Physics 43, 3095–3098 (2004)

    Article  Google Scholar 

  7. Huang, K.N., Huang, C.F., Li, Y.C., Young, M.S.: High precision fast ultrasonic thermometer based on measurement of the speed of sound in air. Review of Scientific Instruments 73, 4022–4027 (2002)

    Article  Google Scholar 

  8. Gulik, G.-J.S., Wijers, J.G., Keurentjes, J.T.F.: Measurement of 2D-temperature distributions in a pervaporation membrane module using ultrasonic computer tomography and comparison with computational fluid dynamics calculations. Journal of Membrane Science 204, 111–124 (2002)

    Article  Google Scholar 

  9. Tsai, W.-Y., Chen, H.-C., Liao, T.-L.: An ultrasonic air temperature measurement system with self-correction function for humidity. Measurement Science Technology 16, 548–555 (2005)

    Article  Google Scholar 

  10. Funakoshi, A., Mizutani, K., Nagai, K., Harakawa, K., Yokyama, T.: Temperature distribution in circular space reconstructed from sampling data at unequal intervals in small numbers using acoustic computerized tomography (A-CT). Japanese Journal of Applied Physics 39, 3107–3111 (2000)

    Article  Google Scholar 

  11. Minamide, A., Mizutani, K., Wakatsuki, N.: Temperature distribution measurement using reflection with acoustic computerized tomography. Japanese Journal of Applied Physics 47, 3967–3969 (2008)

    Article  Google Scholar 

  12. Ingleby, P., Wright, M.D.: Ultrasonic imaging in air using fan-beam tomography and electrostatic transducers. Ultrasonics 40, 507–511 (2002)

    Article  Google Scholar 

  13. Chen, T.-F., Nguyen, K.-T., Wen, S.-S., Jen, C.-K.: Temperature measurement of polymer extrusion by ultrasonic techniques. Measurement Science and Technology 10, 139–145 (1999)

    Article  Google Scholar 

  14. Balasubramainiam, K., Shah, V.V., Costley, R.D., Boudreaux, G., Singh, J.P.: High temperature ultrasonic sensor for the simultaneous measurement of viscosity and temperature of melts. Review of Scientific Instruments 70, 4618–4623 (1999)

    Article  Google Scholar 

  15. Ishikawa, E., Mizutani, K.: Temperature measurement using a dual frequency acoustic delay line oscillator. Japanese Journal of Applied Physics 42, 5372–5373 (2003)

    Article  Google Scholar 

  16. Wang, S., Harada, J., Uda, S.: A wireless SAW temperature sensor using langasite as substrate material for high temperature applications. Japanese Journal of Applied Physics 42, 6124–6127 (2003)

    Article  Google Scholar 

  17. Nishimura, K., Shigekawa, N., Yokoyama, H., Hohkawa, K.: Temperature dependence of surface acoustic wave characteristics of GaN layers on sapphire substrates. Japanese Journal of Applied Physics 44, L564–L565 (2005)

    Article  Google Scholar 

  18. Kashiwagura, N., Akita, M., Kamioka, H.: Ultrasonic study of machinable ceramic over temperature range from room temperature to 1000°C. Japanese Journal of Applied Physics 44, 4339–4341 (2005)

    Article  Google Scholar 

  19. Matsuda, Y., Nakano, H., Nagai, S., Yamanaka, K.: Precise sound velocity measurement using laser ultrasound and its application for temperature measurement in semiconductor processing (in Japanese). Journal of the Japanese Society for Non-destructive Inspection 57, 204–209 (2008)

    Google Scholar 

  20. Takahashi, M., Ihara, I.: Ultrasonic monitoring of internal temperature distribution in a heated material. Japanese Journal of Applied Physics 47, 3894–3898 (2008)

    Article  Google Scholar 

  21. Ihara, I., Takahashi, M.: Non-invasive monitoring of temperature distribution inside materials with ultrasound inversion method. International Journal of Intelligent Systems Technologies and Applications 7(1), 80–91 (2009)

    Article  Google Scholar 

  22. Takahashi, M., Ihara, I.: Quantitative evaluation of one-dimensional temperature distribution on material surface using surface acoustic wave. Japanese Journal of Applied Physics 48, 07GB04 (2009)

    Google Scholar 

  23. Pouet, B.F., Ing, R.K., Krishnaswamy, S., Royer, D.: Het- erodyne interferometer with two-wave mixing in photorefractive crystals for ultrasound detection on rough surfaces. Applied Physics Letters 69, 3782–3784 (1996)

    Article  Google Scholar 

  24. Pouet, B.F., Breugnot, S., Clémenceau, P.: Robust laser-ultrasonic interferemeter based on random quadrature demodulation. In: Thompson, D.O., Chimenti, D.E. (eds.) Review of Quantitative Nondestructive Evaluation, vol. 25, pp. 233–239. AIP (2006)

    Google Scholar 

  25. Meyers, G.E.: Analytical Methods in Conduction Heat Transfer, p. 10. McGraw-Hill, NY (1971)

    Google Scholar 

  26. Press, W., Teukolsky, S., Vetterling, W., Flannery, B.: NUMERICAL RECIPES in C++, p. 849. Cambridge University Press, NY (2003)

    Google Scholar 

  27. Yamada, H., Kosugi, A., Ihara, I.: Non-contact monitoring of surface temperature distribution by laser ultrasound scanning. Japanese Journal of Applied Physics 50, 07HC06 (2011)

    Google Scholar 

  28. Ihara, I., Takahashi, M., Yamada, H.: New ultrasonic methodology for determining temperature gradient and its application to heated materials monitoring. In: Büyüköztürk, O., et al. (eds.) Nondestructive Testing of Materials and Structures. RILEM, vol. 6. RILEM (in print, 2012)

    Google Scholar 

  29. Ihara, I., Tomomatsu, T.: In-situ measurement of internal temperature distribution of sintered materials using ultrasonic technique. In: IOP Conf. Series: Materials Science and Engineering, vol. 18, p. 022008 (2011)

    Google Scholar 

  30. Kosugi, A., Ihara, I., Matsuya, I.: Accuracy Evaluation of Surface Temperature Profiling by a Laser Ultrasonic Method. Japanese Journal of Applied Physics (in print, 2012)

    Google Scholar 

  31. Kosugi, A., Ihara, I.: A simple method for profiling surface temperature distributions by laser-ultrasound. Journal of Solid Mechanics and Materials Engineering 5(12), 705–708 (2011)

    Article  Google Scholar 

  32. Ozisik, M.N.: Basic Heat Transfer, p. 28. McGraw-Hill, Kogakusha (1977)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ihara, I., Tomomatsu, T., Takahashi, M., Kosugi, A., Matsuya, I., Yamada, H. (2013). Ultrasonic Thermometry for Temperature Profiling of Heated Materials. In: Mukhopadhyay, S., Jayasundera, K., Fuchs, A. (eds) Advancement in Sensing Technology. Smart Sensors, Measurement and Instrumentation, vol 1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32180-1_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-32180-1_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-32179-5

  • Online ISBN: 978-3-642-32180-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics