Skip to main content
Log in

Electromagnetic Field Transformation from a Surface Closed Around the Antenna to its Aperture

  • ELECTROMAGNETIC MEASUREMENTS
  • Published:
Measurement Techniques Aims and scope

The article proposes a direct algorithm for reconstructing the electromagnetic field at the antenna aperture, which can be used to solve problems of diagnostics and spatial filtering. The algorithm is based on the solution of Maxwell’s equations in the form of advanced potentials of the electromagnetic field. It is shown that advanced electromagnetic waves, which are a solution to Maxwell’s equations, are equivalent to retarded electromagnetic waves when the parameters of the medium are stationary and linear. The direct algorithm is formulated as the multiplication of the transformation operator matrix by the known vector of the electromagnetic field on a closed surface. In this case, the transformation outward (to the far field) or inward (to the aperture) of the surface is described by the same operator and differs only in the signs of the input quantities. Unlike the known algorithms, the direct one does not require scanning the electromagnetic field on canonical surfaces or solving a large system of integral equations. It makes the new algorithm optimal for use in new near-field antenna measurement systems based on industrial robots, unmanned aerial vehicles, etc. Verification of the developed algorithm using experimental data has shown the possibility of reconstructing the normalized distribution of the electric field strength at the antenna aperture with an error less than 2 dB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

References

  1. A. Yaghjian, “An overview of near-field antenna measurements,” IEEE T. Anten. Propag., 34, No. 1, 30–45 (1986), https://doi.org/10.1109/TAP.1986.1143727.

    Article  ADS  Google Scholar 

  2. Y. Rahmat-Samii, Radio Sci., 19, No. 5, 1205–1217 (1984), https://doi.org/10.1029/RS019i005p01205.

    Article  ADS  Google Scholar 

  3. D. W. Hess, Inverse Methods in Electromagnetic Imaging, NATO ASI Ser., Ser. C, Math. Phys. Sci., Springer, Dordrecht (1985), Vol. 143, pp. 1255–1266, 10.1007/978-94-009-5271-3_33.

  4. C. Cappellin, A. Frandsen, and O. Breinbjerg, “Application of the SWE-to-PWE antenna diagnostics technique to an offset reflector antenna,” IEEE Anten. Propag. Mag., 50, No. 5, 204–213 (2008), https://doi.org/10.1109/MAP.2008.4674761.

    Article  ADS  Google Scholar 

  5. A. V. Kirpanev and V. S. Nazarov, “Diagnostics of flat antenna arrays by ultra-wideband measurements with a cylindrical scanner,” Metrological Support of Innovative Technologies: Coll. Conf. Abstracts, St. Petersburg, March 4, 2019, pp. 112–115.

  6. T. F. Eibert, E. Kilic, C. Lopez, et al., Pr. Electromagn. Res., 151, 127–150 (2015), https://doi.org/10.2528/PIER14121105.

    Article  Google Scholar 

  7. F. Las-Heras, M. R. Pino, S. Loredo, et al., IEEE T. Anten. Propag., 54, No. 8, 2198–2207 (2006), https://doi.org/10.1109/TAP.2006.879190.

    Article  ADS  Google Scholar 

  8. Y. Alvarez, F. Las-Heras, and M. R. Pino, IEEE T. Anten. Propag., 55, No. 12, 3460–3468 (2007), https://doi.org/10.1109/TAP.2007.910316.

    Article  ADS  Google Scholar 

  9. T. F. Eibert and C. H. Schmidt, IEEE T. Anten. Propag., 57, No. 4, 1178–1185 (2009), https://doi.org/10.1109/TAP.2009.2015828.

    Article  ADS  Google Scholar 

  10. F. R. Varela, B. G. Iragüen, and M. Sierra-Castaner, IEEE T. Anten. Propag., 68, No. 1, 500–508 (2019), https://doi.org/10.1109/TAP.2019.2935108.

    Article  Google Scholar 

  11. J. A. Gordon et al., IEEE T. Anten. Propag., 63, No. 12, 5351–5362 (2015), https://doi.org/10.1109/TAP.2015.2496110.

    Article  ADS  Google Scholar 

  12. D. J. van Rensburg, B. Walkenhorst, Q. Ton, and J. Demas, “A robotic near-field antenna test system relying on non-canonical transformation techniques,” 2019 Antenna Measurement Techniques Association Symposium (AMTA), San Diego, CA, USA (2019), pp. 1–5, 10.23919/AMTAP.2019.8906358.

  13. P. A. Slater, J. M. Downey, M. T. Piasecki, and B. L. Schoenholz, “Portable laser guided robotic metrology system,” 2019 Antenna Measurement Techniques Association Symposium (AMTA), San Diego, CA, USA (2019), pp. 1–6, 10.23919/AMTAP.2019.8906337.

  14. A. Geise et al., IEEE T. Anten. Propag., 67, No. 5, 3346–3357 (2019), https://doi.org/10.1109/TAP.2019.2900373.

    Article  ADS  Google Scholar 

  15. M. Garcia-Fernandez, Y. A. Lopez, and F. L. H. Andres, IET Microw. Anten, Propag., 13, No. 13, 2224–2231 (2019), 10.1049/iet-map.2018.6167.

  16. G. Alvarez-Narciandi et al., IEEE T. Anten. Propag., 68, No. 7, 5636–5645 (2020), https://doi.org/10.1119/TAP.2020.297893.

    Article  ADS  Google Scholar 

  17. J. A. Stratton, Theory of Electromagnetism [Russian translation], Gostekhizdat, Moscow–Leningrad (1948).

    Google Scholar 

  18. N. V. Anyutin, I. M. Malay, M. A. Ozerov, et al., “Probe correction of measurements of the amplitude-phase distribution in the near field,” Izmer. Tekhn., No. 1, 50–53 (2018), 10.32446/0368-1025it.2018-1-50-53.

  19. N. Anyutin, I. Malay, and A. Malyshev, 2019 Radiation and Scattering of Electromagnetic Waves (RSEMW), Divnomorskoe, Russia (2019), pp. 293–296, https://doi.org/10.1109/RSEMW.2019.8792778.

  20. B. M. Bolotovskiy and S. N. Stolyarov, “Modern state of electrodynamics of moving media (infinite media),” Usp. Fiz. Nauk, 114, Iss. 12, 569–608 (1974), 10.3367/UFNr.0114.197412a.0569.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Anyutin.

Additional information

Translated from Izmeritel’naya Tekhnika, No. 1, pp. 48–55, January, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anyutin, N.V. Electromagnetic Field Transformation from a Surface Closed Around the Antenna to its Aperture. Meas Tech 64, 51–59 (2021). https://doi.org/10.1007/s11018-021-01895-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11018-021-01895-4

Keywords

Navigation