Skip to main content
Log in

Operational Effectiveness of Phase-Chronometric and Neurodiagnostic Methods for Controlling Rolling-Element Bearing Degradation

  • Published:
Measurement Techniques Aims and scope

In the present study, problems associated with monitoring the condition of rolling-element bearings (REBs) – one of the most common technical devices of rotor units in machines and mechanisms – are considered. A novel approach to metrological support and assessment of the technical condition of rolling-element bearings during operation is presented. Existing approaches are analyzed, including methods of vibration diagnostics, envelope analysis, wavelet analysis, and others. The application of the phase-chronometric and neurodiagnostic methods for monitoring a bearing over its life cycle is considered. For this purpose, a unified format of measurement information was used. The possibility of providing REB diagnostics on the basis of measurement information obtained from the shaft and the cage is evaluated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. A. Kumar and R. Kumar, J Nondestruct Eval, 38, 5 (2019), https:/doi.org/https://doi.org/10.1007/s10921-018-0543-8.

  2. J. Dybata and R. Zimroz, Appl Acoust, 77, 195–203 (2014), DOI:https://doi.org/10.1016/j.apacoust.2013.09.001.

    Article  Google Scholar 

  3. N. G. Nikolaou and I. A. Antoniadis, NDT & E Int., 35, 197–205 (2002), https:/doi.org/https://doi.org/10.1016/j.apacoust.2013.09.001.

  4. L. Zheng, Y. Xiang, and C. Sheng, J. Braz. Soc. Mech. Sci. Eng., 41, 505 (2019), https:/doi.org/https://doi.org/10.1007/s40430-019-2011-5.

  5. M. D. Prieto, G. Cirrincione, and A. G. Espinosa, IEEE Trans. Industr. Electr., 8, 3398–3407 (2013), https:/doi.org/https://doi.org/10.1109/TIE.2012.2219838.

  6. I. Attoui, B. Oudjani, N. Boutasseta, et al., Int. J. Adv. Manuf. Tech., 106, 3409–3435 (2020), https:/doi.org/https://doi.org/10.1007/s00170-019-04729-4.

  7. R. B. Randall and J., Antoni, Mech. Syst. Signal Pr., 25, No. 2, 485–520 (2011), https:/doi.org/10.1016/j.ymssp.2010.07.017.

  8. S. Chatterton, P. Pennacchi, A. Vania, and P. Borghesani, Proc. 9th IFToMM Int. Conf. Rotor Dynamics. Mechanisms and Machine Science, Springer, Cham (2015), Vol. 21.

  9. M. Cotogno, M. Cocconcelli, and R. Rubini, Advances in Condition Monitoring of Machinery in Non-Stationary Operations. Lecture Notes in Mechanical Engineering, Springer, Berlin, Heidelberg (2014).

  10. P. Borghesani, R. Ricci, S. Chatterton, and P. Pennacchi, Advances in Condition Monitoring of Machinery in Non- Stationary Operations. Lecture Notes in Mechanical Engineering, Springer, Berlin, Heidelberg (2014).

  11. Y. Ying, J. Li, J. Li, and Z. Chen, Advanced Hybrid Information Processing. ADHIP 2017. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, Springer, Cham (2018), Vol. 219.

  12. R. S. Tikhonov and N. P. Starostin, “Thermal diagnostics of friction in a sliding bearing system taking into account shaft rotation,” Mekh., Resurs Diagn. Mater. Konstr., 83–83 (2016).

  13. S. V. Korotkevich, O. V. Kholodilov, V. V. Kravchenko, et al., “Incoming inspection of rolling-element bearings by physical methods,” Remont. Vosstan. Moderniz., No. 11, 24–31 (2015).

  14. V. V. Mishin and A. S. Pashmentova, “A device for diagnosing a rolling-element bearing during incoming inspection,” Sovr. Mater., Tekhn. Tekhnol., No. 1 (9), (2017).

  15. M. P. Kozochkin, F. S. Sabirov, A. N. Bogan, and K. V. Myslivtsev, “Diagnostics of rolling-element bearings during machine operation based on vibration signal analysis,” Stanki Instr., No. 1, 21–25 (2013).

  16. V. V. Yurkevich and P. V. Lushnikov, “Diagnostics of rolling-element bearings,” Stanki Instr., No. 1, 97–99 (2015).

  17. E. A. Kudryavtsev, “Possible ways of using phase timing for diagnostics of rolling stock,” Zheleznodor. Transp., No. 12, 51–53 (2015).

  18. E. A. Kudryavtsev, “Assessment of the technical condition of axle-box rolling-element bearings for railroad cars,” Remont. Vosstan. Moderniz., No. 6, 26–31 (2013).

  19. M. P. Kozochkin and F. S. Sabirov, “Measurement of spatial vibrations for diagnostics of the assembly quality of spindle assemblies,” Izmer. Tekhn., No. 12, 49–52 (2016).

  20. V. I. Pronyakin, E. A. Kudryavtsev, A. S. Komshin, and K. G. Potapov, “Diagnostics of rolling-element bearings by phase-chronometric method,” Izv. Vyssh. Uchebn. Zaved. Mashinostr., No. 3 (684), (2017).

  21. E. A. Kudryavtsev, A. S. Komshin, K. G. Potapov, and V. I. Pronyakin, “A new concept of PCM diagnostics of rolling-element bearings,” Remont. Vosstan. Moderniz., No. 4, 18–24 (2017).

  22. M. I. Kiselev, A. S. Komshin, and A. B. Syritskii, “Prediction of the technical state of a turning tool based on phase-chronometric measuring information,” Izmer. Tekhn., No. 11, 8–11 (2017), https:/doi.org/https://doi.org/10.32446/0368-1025it.2017-11-8-11.

  23. A. S. Komshin, “Mathematical modeling of measuring and computational control of electromechanical parameters of turbine units by phase-chronometric method,” Izmer. Tekhn., No. 8, 12–15 (2013).

  24. A. B. Syritskii, “Measuring the wear of a cutting tool by the phase-chronometric method during processing,” Izmer. Tekhn., No. 6, 30–32 (2016).

  25. A. S. Komshin and C. R. Orlova, “Control of degradation of structural materials during operation on the example of string elements,” Izmer. Tekhn., No. 6, 26–29 (2016).

  26. M. I. Kiselev, V. I. Pronyakin, and A. K. Tulekbaeva, IOP Conf. Ser.: Mater. Sci. Eng., 312, No. 1, 012012 (2018), https:/doi.org/https://doi.org/10.1088/1757-899X/312/1/012012.

  27. A. I. Leontiev and S. A. Burtsev, Dokl. Physics, 61, No. 11, 543–545 (2016), https:/doi.org/https://doi.org/10.1134/S1028335816110100.

  28. R. A. Poshekhonov, G. A. Arutyunyan, S. A. Pankratov, et al., Semiconductors, 51, No. 8, 981–985 (2017), https:/doi.org/https://doi.org/10.1134/S1063782617080255.

  29. V. Lavrinenko, A. Polyakova, and A. Polyakov, MATEC Web Conf., 224, 02074 (2018), https:/doi.org/https://doi.org/10.1051/matecconf/201822402074.

  30. N. Wiener. Cybernetics. Ch. I [Russian translation], Sov. Radio, Moscow (1961), 2nd ed.

  31. Yu. F. Golubev, Neural Network Methods in Mechatronics, Izd. MGU im. Lomonosova, Moscow (2007).

    MATH  Google Scholar 

  32. Keras: The Python Deep Learning Library, www.keras.oi/, acc. 02/20/2020.

  33. TensorFlow: An End-to-End Open Source Machine Learning Platform, www.tensorflow.org, acc. 02/20/2020.

  34. M. Kraus and E. Voshni, Measuring Information Systems [Russian translation], Mir, Moscow (1975).

    Google Scholar 

  35. P. V. Novitskii and I. A. Zograf, Estimation of Measurement Results Errors, Energoatomizdat, Leningrad (1991), 2nd ed.

  36. S. V. Slepova, Basics of Accuracy of Measuring Devices: Teach. Aid, Izd. YuUrGU, Chelyabinsk (2008).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Komshin.

Additional information

Translated from Izmeritel’naya Tekhnika, No. 7, pp. 43–50, July, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Komshin, A.S., Potapov, K.G., Pronyakin, V.I. et al. Operational Effectiveness of Phase-Chronometric and Neurodiagnostic Methods for Controlling Rolling-Element Bearing Degradation. Meas Tech 63, 559–566 (2020). https://doi.org/10.1007/s11018-020-01823-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11018-020-01823-y

Keywords

Navigation