Skip to main content
Log in

State Primary Standard of Unit of Specific Heat Capacity of Solids (Get 60-2019)

  • STATE STANDARDS
  • Published:
Measurement Techniques Aims and scope

The results of studies designed to improve the State Primary Standard of the unit of specific heat capacity (GET 60-74) carried out from 2017 to 2019 are described. A complex of high-precision measurement instruments that form the new State Primary Standard of the heat capacity of solids (GET 60-2019) at the head of which is the KA-S4 high-precision calorimeter was created. A set of standard measures of specific heat capacity was created to reproduce and transmit the unit from GET 60-2019 to lower-echelon measurement instruments. The measurement chain for transmission of the unit of specific heat capacity from GET 60-2019 to lower-echelon measurement instruments was developed. The expanded uncertainty of measurements performed on the basic KA-S4 adiabatic calorimeter of the standard complex in the working temperature range of GET 60-2019 does not exceed 0.27–0.36% with conformance factor k = 2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

References

  1. E. I. Pogorel’tsev, S. V. Mel’nikova, A. V. Kartashev, et al., “Thermal, optical, and dielectric properties of the fluorite Rb2TaF7,” Fiz. Tverd. Tela, 59, No. 5, 959–964 (2017), DOI: https://doi.org/10.1134/S1063783417050250.

    Article  Google Scholar 

  2. J. E. K. Schawe, S. Pogatscher, and J. F. Löffler, Thermochim. Acta, 665, 178518, 1–8 (2020), DOI: https://doi.org/10.1016/j.tca.2020.178518.

    Article  Google Scholar 

  3. K. Uddin, M. Amirul Islam, S. Mitra, et al., Appl. Thermal Engr., 129, 117–126 (2018), DOI: https://doi.org/10.1016/j.applthermaleng.2017.09.057.

    Article  Google Scholar 

  4. Y. Gao, B. Zhao, B. Yang, and C. Schick, Fast Scan. Calorim., 691–721 (2016), DOI: https://doi.org/10.1007/978-3-319-31329-0_21.

  5. J. Lyubina, Magnetocaloric Materials, Springer Series in Materials Science (2016), pp. 115–186, DOI: https://doi.org/10.1007/978-3-319-26106-5_4.

  6. A. E. Musikhin, M. A. Bespyatov, V. N. Shlegel, and V. D. Grigorieva, J. Alloys and Compounds, 830, 154592 (2020), DOI: https://doi.org/10.1016/j.allcom.2020.154592.

    Article  Google Scholar 

  7. G. T. Furukawa, T. B. Douglas, R. E. McCoskey, and D. C. Ginnings, J. Res. Natl. Bur. Stand., 57, No. 2, Res. Pap. 2694, 67–82 (1956), DOI: https://doi.org/10.6028/jres.057.008.

  8. D. C. Ginnings, T. D. Douglas, and A. F. Ball, J. Res. Natl. Bur. Stand., 45, No. 2, Res. Pap. RP2110, 23–33 (1950), DOI: https://doi.org/10.6028/jres.045.003.

  9. E. D. West and D. C. Ginnings, J. Res. Natl. Bur. Stand., 60, No. 4, 309–316 (1958), DOI: https://doi.org/10.6028/jres.060.034.

    Article  Google Scholar 

  10. D. G. Archer, J. Chem. Eng. Data, 48, 1157–1163 (2003), DOI: https://doi.org/10.1021/je030112g.

    Article  Google Scholar 

  11. A. Pramann, H.-W. Krupke, Y. Moriya, et al., “Phase transitions of gallium and indium, determined by adiabatic calorimetry,” in: Phys.-Tekhn. Bunsentag., Anmerk. zur Konferenz PTB, Saarbrücken, Germany, May 1–3, 2008, p. 279.

  12. S. M. Sarge, E. Gmelin, G. W. H. Hohne, et al., “Kalibrierung des dynamischer Kalorimter,” PTB-Mitteil., 6, 491–512 (1993), ISSN 0030-834x.

  13. A. B. E. Haruka, AIST Bull. Metrol., 7, No. 2, 101–116 (2008).

    Google Scholar 

  14. Kato Hideyuki and Tetsuya Baba, Jap. J. Appl. Phys., 50, 11RG01–111RG03 (2011), DOI: https://doi.org/10.1143/JJAP.50.11RG01.

  15. Yoichi Takahashi, Pure & Appl. Chem., 69, No. 11, 2263–2269 (1997), DOI: https://doi.org/10.1351/pac199769112263.

    Article  MathSciNet  Google Scholar 

  16. Tetsuya Baba, Metrologia, 47, S143–S155 (2010), DOI: https://doi.org/10.1088/0026-1394/47/2/S12.

    Article  ADS  Google Scholar 

  17. T. Matsumoto, G. Barreiro, and A. Ono, “Measurements of specific heat capacity and hemispherical total emissivity at high temperatures using a feedback-controlled pulse-heating technique,” in: Proc. 20th Japan Symp. on Thermophysical Properties (1999), pp. 479–482.

    Google Scholar 

  18. Zhi Cheng Tan, Quan Shi, and Xin Liu, “Construction of high-precision adiabatic calorimeter and thermodynamic study on functional materials,” in: CalorimeterDesign, Theory and Applications in Porous State, DOI: https://doi.org/10.5772/intechopen.76151.

  19. I. M. Frenkel’ and O. A. Sergeev, “State Primary Standard of unit of specific heat capacity of solids,” Izmer. Tekhn., No. 4, 45–49 (1975).

    Google Scholar 

  20. W. Hemminger and G. Höhne, Calorimetry: Fundamentals and Practice [Russian translation], Khimiya, Moscow (1989).

    Google Scholar 

  21. D. G. Archer, J. Phys. Chem. Ref. Data, 22, No. 6 (1993), DOI: https://doi.org/10.1063/1.555931.

  22. National Bureau of Standards Certificate Standard Reference Material 720: Synthetic Saffhire (a-Al2O3), Publ. NBS, US Dept. of Commerce, Washington, D.C. (April, 1982).

    Google Scholar 

  23. S. Stolen, R. Glockner, and F. Gronvold, J. Chem. Thermodyn., 28, 1263–1281 (1996), DOI: https://doi.org/10.1006/jcht.1996.0113.

    Article  Google Scholar 

  24. Michio Sorai, J. Chem. Thermodyn., 24, 167–180 (1992), DOI: https://doi.org/10.1016/S0021-9614(05)80046-1.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. A. Kompan.

Additional information

Translated from Izmeritel’naya Tekhnika, No. 6, pp. 3–8, June, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kompan, T.A., Kulagin, V.I., Vlasova, V.V. et al. State Primary Standard of Unit of Specific Heat Capacity of Solids (Get 60-2019). Meas Tech 63, 407–413 (2020). https://doi.org/10.1007/s11018-020-01802-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11018-020-01802-3

Keywords

Navigation