Skip to main content
Log in

Measurement of Nonlocality of a Magnetic Disturbance in a Superconducting Slit Line

  • Published:
Measurement Techniques Aims and scope

Features of the propagation of a pulsed magnetic disturbance in a closed superconducting slit microwave transmission line are analyzed in the context of nonlocality of an action on a quantum object. It is suggested that, in contrast to previously conducted experiments with photons, such an approach enables us to specify the result of nonlocality of an action in a simpler situation with only a single component of the electromagnetic radiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. N. Bohr, Atomic Physics and Human Cognition [Russian translation], IIL, Moscow (1961).

    Google Scholar 

  2. W. Heisenberg, Physics and Philosophy. Part and Whole [Russian translation], Nauka, Moscow (1989).

    Google Scholar 

  3. M. Jammer, The Evolution of the Concepts of Quantum Mechanics [Russian translation], Nauka, Moscow (1985).

    Google Scholar 

  4. A. Einstein, B. Podolsky, and N. Rosen, “Can quantum-mechanical description of physical reality be considered complete?” Phys.Rev., 47, 777–780 (1935).

    Article  ADS  MATH  Google Scholar 

  5. N. Bohr, “Can quantum-mechanical description of physical reality be considered complete?” Phys.Rev., 48, 696–702 (1935).

    Article  ADS  MATH  Google Scholar 

  6. A. Einstein, N. Rosen, and B. Podolsky, “Can quantum-mechanical description of physical reality be considered complete?” Usp. Fiz. Nauk, 16, 440–457 (1936).

    Google Scholar 

  7. E. Schroedinger, “Die gegenwärtige Situation in der Quantenmechanik,” Naturwissenschaften, No. 23, 807–812, 823–828, 844–849 (1935).

  8. J. von Neumann, Mathematical Foundations of Quantum Mechanics [Russian translation], Nauka, Moscow (1964).

    Google Scholar 

  9. K. R. Popper, Quantum Theory and the Crisis in Physics. From the Postscriptum to the Logic of Scientific Discovery [Russian translation], Logos, Moscow (1998).

  10. D. A. Bohm, “Suggested interpretation of the quantum theory in terms of ‘hidden’ variables,” Phys. Rev., 85, 166–193 (1952).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  11. D. Bohm, Quantum Theory [Russian translation], Fizmatgiz, Moscow (1961).

    Google Scholar 

  12. J. S. Bell, “On the Einstein–Podolsky–Rosen paradox,” Physica, 1, 195–200 (1964).

    Google Scholar 

  13. J. S. Bell, “Speakable and unspeakable in quantum mechanics,” in Collected Papers on Quantum Philosophy with a New Introduction, A. Aspect (ed.), Cambridge Univ., London (2004).

    Google Scholar 

  14. A. Aspect, P. Grangier, and G. Roger, “Experimental tests of realistic local theories via Bell’s theorem,” Phys. Rev. Lett., 47, 460–463 (1981).

    Article  ADS  Google Scholar 

  15. A. Aspect, P. Grangier, and G. Roger, “Experimental realization of Einstein–Podolsky–Rosen–Bohm Gedanken-experiment: a new violation of Bell’s inequalities,” Phys. Rev. Lett., 49, 91–94 (1982).

    Article  ADS  Google Scholar 

  16. X.-S. Ma et al., “Quantum teleportation over 143 kilometers using active feed-forward,” Nature, 489, 269–273 (2012).

    Article  ADS  Google Scholar 

  17. C. Noelleke et al., “Efficient teleportation between remote single-atom quantum memories,” Phys. Rev. Lett., 110, 140403 (2013).

    Article  ADS  Google Scholar 

  18. A. Peruzzo et al., “A quantum delayed-choice experiment,” Science, 338, 634–637 (2012).

    Article  ADS  Google Scholar 

  19. F. Kaiser et al., “Entanglement-enabled delayed-choice experiment,” ibid., 637–640.

  20. V. D’Ambrosio et al., “Experimental implementation of a Kochen–Specker set of quantum tests,” Phys. Rev. X, 3, 011012 (2013).

    Google Scholar 

  21. The Born–Einstein Letters: Correspondence between Albert Einstein and Max and Hedwig Born from 1916 to 1955, Walker, New York (1971).

  22. S. L. Vavilov, “Experimental investigations of light quantum fluctuations by a visual method,” Usp. Fiz. Nauk, 36, Iss. 3, 247–283 (1948).

    Google Scholar 

  23. A. D. Grigor’ev, Electrodynamics and Microwave Technology [in Russian], Vysshaya Shkola, Moscow (1990).

    Google Scholar 

  24. J. S. Langer, “Coherent states in the theory of superfluidity,” Phys. Rev. Lett., 167, 183–190 (1967).

    Google Scholar 

  25. P. Hohenberg, “Long-range order in superconducting transition,” Usp. Fiz. Nauk, 102, Iss. 2, 239–246 (1970).

    Article  Google Scholar 

  26. F. London and H. London, “The electromagnetic equations of the supraconductor,” Proc. Roy. Soc. A, 149, 71–88 (1935).

    Article  ADS  MATH  Google Scholar 

  27. E. Linton, Superconductivity [Russian translation], Mir, Moscow (1971).

    Google Scholar 

  28. R. Feinman, Statistical Mechanics [Russian translation], Mir, Moscow (1975).

    Google Scholar 

  29. A. I. Golovashkin et al., “Ordinary SQUID interferometers and interferometers functioning on waves of matter in superfluidic helium: the role of quantum fluctuations,” Zh. Eksp. Teor. Fiz., 138, No. 2, 373–380 (2010).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. N. Izmailov.

Additional information

Translated from Metrologiya, No. 7, pp. 18–28, July, 2013.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zherikhina, L.N., Izmailov, G.N., Karuzskii, A.L. et al. Measurement of Nonlocality of a Magnetic Disturbance in a Superconducting Slit Line. Meas Tech 56, 981–987 (2013). https://doi.org/10.1007/s11018-013-0316-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11018-013-0316-9

Keywords

Navigation