Skip to main content
Log in

System for remote monitoring of environmental aggressivity

  • Physicochemical Measurements
  • Published:
Measurement Techniques Aims and scope

We have developed and tested a laser monitoring system making it possible to remotely monitor the thickness of a sensor layer exposed to an aggressive environment. Using the example of continuous monitoring of a layer on the surface of an iron-based metal oxide sensor, we consider the methodological aspects of using a remote laser ellipsometric probe for monitoring the aggressivity of an aqueous medium at different temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. E. Andrews et al., An Introduction to Environmental Chemistry [Russian translation from English], Mir, Moscow (1999).

    Google Scholar 

  2. T. V. Alykova, Chemical Monitoring of Environmental Objects [in Russian], Izd. Astrakh. Gos. Ped. Univ., Astrakhan (2002).

    Google Scholar 

  3. A. P. Suponina, M. D. Koryakova, and P. S. Gordienko, “Chemical and environmental assessment of shoaling sea water contamination with heavy metals,” Protect. Metals, 44, No. 5, 490–494 (2008).

    Article  Google Scholar 

  4. R. Mejeris, Laser Remote Sensing [Russian translation], Mir, Moscow (1987).

    Google Scholar 

  5. S. M. Davis (ed.) et al., Remote Sensing: The Quantitative Approach [Russian translation], Nedra, Moscow (1983).

    Google Scholar 

  6. R. W. Cattrall, Chemical Sensors [Russian translation], Nauchnyi Mir, Moscow (2000).

    Google Scholar 

  7. V. A. Kotenev et al., “Formation of metal (iron)-oxide nanostructures and nanocomposites by reactive sputtering and low-temperature reoxidation,” Protect. Metals, 44, No. 6, 589–592 (2008).

    Article  Google Scholar 

  8. V. A. Kotenev, D. N. Tyrin, and A. Yu. Tsivadze, “Laser-ellipsometric monitoring of corrosive attack,” Protect. Metals Phys. Chem. Surf., 45, No. 4, 472–486 (2009).

    Google Scholar 

  9. A. I. Vanyurikhin and V. P. Gerchanovskaya, Optoelectronic Polarizing Devices [in Russian], Tekhnika, Kiev (1984).

    Google Scholar 

  10. R. M. A. Azzam and N. M. Bashara, Ellipsometry and Polarized Light [Russian translation from English], Mir, Moscow (1981).

    Google Scholar 

  11. V. A. Kotenev, D. N. Tyrin, and A. Yu. Tsivadze, “Phase nanotomography in the superficial layers,” Protect. Metals, 44, No. 5, 455–462 (2008).

    Article  Google Scholar 

  12. A. S. Noskov, M. A. Savinkina, and N. Ya. Anishchenko, Environmental Impact of Thermal Power Plants and Methods to Reduce the Damage [in Russian], Izd. GPNTB SO AN SSSR, Novosibirsk (1990).

    Google Scholar 

  13. M. F. Obrecht and M. Pourbaix, “Corrosion of metals in potable water systems,” in: Proc. 3rd Int. Congr. on Metal Corrosion [Russian translation], Mir, Moscow (1968), Vol. IV, p. 231.

  14. M. A. Petrunin et al., “Scanning electrochemical diagnostics of initial stages of anodic dissolution of carbon steel in chloride-containing solutions,” Protect. Metals, 44, No. 5, 529–532 (2008).

    Article  Google Scholar 

  15. U. R. Evans, The Corrosion and Oxidation of Metals [Russian translation], Mashgiz, Moscow (1962).

    Google Scholar 

  16. I. E. Zanin et al., “Peculiarities of long-term effect of hydrosulfide-enriched seawater on a copper alloy,” Protect. Metals Phys. Chem. Surf., 45, No. 2, 227–231 (2009).

    Google Scholar 

  17. V. A. Kotenev et al., “Three-dimensional visualization of metal dissolution products in the near-electrode layer at the metal–solution interface,” Zash. Metallov, 41, No. 6, 640–655 (2005).

    Google Scholar 

  18. V. A. Kotenev et al., “Transformation of metal–oxide nanostructures in the process of afteroxidation of iron reactively evaporated in oxygen atmosphere,” Protect. Metals Phys. Chem. Surf., 45, No 6, 704–708 (2009).

    Google Scholar 

  19. V. I. Pshenitsyn, M. I. Abaev, and N. Yu. Lyzlov, Ellipsometry in Physicochemical Studies [in Russian], Khimiya, Leningrad (1986).

    Google Scholar 

  20. M. Matsudaira, M. Suzuki, and Y. Saw, “Investigation of carbon steel passivation behavior in deionized water by ellipsometry,” Corrosion-NACE, 36, No. 5, 267–270 (1981).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Kotenev.

Additional information

Translated from Izmeritel’naya Tekhnika, No. 9, pp. 69–73, September, 2010.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kotenev, V.A., Tyurin, D.N., Kablov, E.N. et al. System for remote monitoring of environmental aggressivity. Meas Tech 53, 1080–1087 (2010). https://doi.org/10.1007/s11018-010-9622-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11018-010-9622-7

Key words

Navigation