Skip to main content
Log in

A Mathematical Model for the Operational Evaluation of the Dynamics of Heat and Mass Exchange in Flash Evaporators

  • Published:
Metallurgist Aims and scope

An express model for quantitative and qualitative evaluation of the dynamic of heat and mass exchange in flash evaporators that recover low-temperature heat of metallurgical and chemical industries is developed. This model is supposed to be used for computer optimization of the process parameters for providing input data for designing an evaporator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

References

  1. D. I. Kharaz and B. I. Psakhis, Uses of Secondary Energy Resources in the Chemical Industry [in Russian], Khimiya, Moscow (1984).

  2. B. I. Psakhis, A. V. Popov, V. G. Leont’evskii, et al., Method of Treatment of Tar-Waters [in Russian], Inventor’s Certificate 960128 USSR, IPC S02 F1/20, No. 3246972/23-26; Appl. Feb. 13, 1981; Publ. Sep. 23, 1982, Byull. No. 35.

  3. B. D. Zubitskii, S. N. D’yakov, S. D. Tikhov, and V. A. Chimarov, Method of Cooling of Lean Monoammonium Phosphate Solution when Recovering Ammonia from Coke Gas in a Cyclic Phosphate Process and Associated Facility [in Russian], Patent 2276100 RF,

  4. IPC C01C1/12, No. 2004118169/15; Appl. Nov. 20, 2005; Publ. May 10, 2006; Byull. No. 13.

  5. A. M. Islamova, “Modern methods for industrial sewage treatment,” in: Proc. 10th Int. Youth Sci. Conf. on Natural-Science and Engineering Disciplines: Creativity of Young People for Scientific Advancement (Yoshkar-Ola, April 17–18, 2015) [in Russian], part 1, Povolzh. Gos. Tekhnol. Univ., Yoshkar-Ola (2015), pp. 247–248.

  6. E. A. Akhmetov and A. M. Islamova, “Finding a cost-effective method for industrial sewage treatment,” in: Proc. Int. Sci. Tekhn. Conf. on Innovative Mechanical-Engineering Technologies, Equipment, and Materials-2016 (MNTK IMTOM-2016). (Kazan, December 7–9, 2016) [in Russian], part 1, Kazan. Nauchn.-Issled. Inst. Aviats. Tekhnol., Kazan (2016), pp. 261–265.

  7. N. S. Vasilevskii, V. A. Munts, and S. M. Stepin, “Using tubes with external circular fins in flash-boiling installations,” Evraz. Soyuz Uchenykh, No. 3–3 (60), 17–21 (2019).

  8. 7. T. M. Sabirova, N. A. Ryazantseva, and I. V. Nevolina, “Singlephase biotechnology for wastewater treatment in coke production at Visakhapatnam Steel Plant,” Coke and Chemistry, 60, No. 7, 285–291 (2017); https://doi.org/10.3103/S1068364X17070055.

    Article  Google Scholar 

  9. 8. U. A. Kologrieva, “Best available technologies in ferrous metallurgy: 3rd Int. Industr. Conf.,” Koks i Khimiya, No. 1, 38–43 (2022).

    Google Scholar 

  10. A. A. Shinkarenko and T. I. Tikhomirova, “Recovery of heat from low-temperature exhaust gases,” in: Proc. All-Russia Sci. Conf. on Environmental Safety and Protection: Fundamental and Applied Research (Belgorod, October 14–18, 2019) [in Russian], Vol. 1, Belgorod. Gos. Tekhnol. Univ. im. V. G. Shukhova, Belgorod (2019), pp. 114–117.

  11. V. P. Frolov and A. Ya. Shelginskii, “Thermal tubes in heat-supply systems,” Energosnabzh., No. 6 (2004); URL: http://www.abok.ru/for_spec/articles.php?nid=2690.

  12. M. K. Bezrodnyi, I. L. Pioro, and T. O. Kostyuk, Transfer Processes in Two-Phase Thermosyphon Systems: Theory and Applications [in Russian], Fakt, Kyiv (2005).

  13. 12. C. Casarosa, E. Latrofa, and A. Shelginski, “The geyser effect in a two phase thermosyfone,” Int. J. Heat and Mass Transfer, 26, No. 6, 933–941 (1983).

    Article  CAS  Google Scholar 

  14. A. Shelghinski, “Tubi di calore a media temperature,” in: ATTI del XXXVI Congresso Nazionale ATI dell Associazione Termotecnica Italiana, Vol. Viaregio (1981), pp. 739–752.

  15. 14. O. N. Temyashova, P. G. Udyma, and A. Ya. Shelginskii, “Improving the power supply system of a phosphoric acid production shop,” Traktat Mosk. Energ. Inst., 198, 43–47 (1989).

    Google Scholar 

  16. O. V. Filina and A. Ya. Shelginsky, “Analysis of the efficiency of using heat in the production of sulfuric acid,” Promyshl. Energet., No. 7, 40–42 (1999).

  17. L. L. Vasil'ev, V. G. Kiselev, Yu. N. Matveev, and F. F. Molodkin, Waste Heat Exchangers with Heat Tubes [in Russian], Nauka i Tekhn., Minsk (1987).

  18. A. R. Fert, N. I. Chekhovskaya, and A. V. Grebenyuk, “Thermosyphon system for recovery of the heat of exhaust air,” Vodosnabzh. Sanitarn. Tekhn., No. 7, 17 (1987).

  19. E. I. Taubman and B. L. Pastushenko, Flash-Boiling Processes and Installations [in Russian], Energoizdat, Moscow (1990).

  20. D. Saury, S. Harmand, and M. Siroux, “Experimental study of flash evaporation of a water film,” Int. J. Heat and Mass Transfer, 45, No. 16, 3447–3457 (2002); https://doi.org/10.1016/S0017-9310(02)00056-X.

  21. Y. Liao and D. Lucas, “Computational modelling of flash boiling flows: A literature survey,” Int. J. Heat and Mass Transfer, 111, 246–265 (2017); https://doi.org/10.1016/j.ijheatmasstransfer.2017.03.121.

  22. S. Singh, P. R. Chakraborty, and H. B. Kothadia, “Experimental study on energy transformation of static liquid pool during flash evaporation,” Appl. Therm. Eng., 220 (2023); https://doi.org/10.1016/j.applthermaleng.2022.119712.

  23. Multistage Flash Evaporators [in Russian]; http://www.teplosibmash.ru/catalog/id/15/.

  24. A. S. Andreev and N. N. Sinitsyn, “A computational model for studying the dynamics of heat exchange, assessing thermodynamic efficiency, and control of a process,” Promyshl. Energet., No. 7, 20–25 (2020).

  25. A. S. Andreyev and K. V. Aksenchik, “Experience of using the SimInTech dynamic simulation environment for training students,” in: Proc. 25th Int. Sci.-Appl. Conf. on Innovations in Occupational and Vocational Teaching Education (Yekaterinburg, April 07–08, 2020) [in Russian], Vol. 1, Izd. Ros. Gos. Prof.-Ped. Univ., Yekaterinburg (2020), pp. 19–193.

  26. S. S. Kutateladze, Fundamentals of the Heat-Transfer Theory [in Russian], Atomizdat, Moscow (1979).

  27. M. A. Mikheev and I. M. Mikheeva, Fundamentals of Heat Transfer [in Russian], Energiya, Moscow (1973).

  28. O. N. Man’kovskii, A. R. Tolchinskii, and M. V. Aleksandrov, Heat-Exchange Equipment for Chemical Production [in Russian], Khimiya, Leningrad (1976).

  29. 28. R. C. Reid, J. M. Prausnitz, and T. K. Sherwood, The Properties of Gases and Liquids, McGraw-Hill, New York (1997).

    Google Scholar 

  30. B. A. Kartashov, E. A. Shabaev, O. S. Kozlov, and A. M. Shchekaturov, SimInTech Dynamic Simulation Environment: Hands-on Course on Simulation of Automatic Control Systems [in Russian], DMK Press, Moscow (2017).

  31. E. R. Alekseev and O. V. Chesnokova, An Introduction to Octave for Engineers and Mathematicians [in Russian], ALT Linux, Moscow (2012).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Andreev.

Additional information

Translated from Metallurg, Vol. 67, No. 10, pp. 112–117, October, 2023. Russian DOIhttps://doi.org/10.52351/00260827_2023_10_112.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andreev, A.S., Aksenchik, K.V. A Mathematical Model for the Operational Evaluation of the Dynamics of Heat and Mass Exchange in Flash Evaporators. Metallurgist 67, 1561–1569 (2024). https://doi.org/10.1007/s11015-024-01649-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11015-024-01649-x

Keywords

Navigation