Skip to main content
Log in

Effect of Production Technological Parameters on Corrosion Resistance of Ultralow-Carbon Cold-Rolled IF-Steels

  • Published:
Metallurgist Aims and scope

The influence of production technological parameters on corrosion resistance of cold-rolled ultralow-carbon IF-steels of various compositions (0.003–0.005 wt.% C, 0.54–0.71 wt.% Ti) is studied. Analysis of the microstructure and chemical composition shows that grain size and composition changes in the range studied do not affect corrosion resistance. Mechanical tests reveal a correlation between the corrosion rate and rolled product yield strength. Statistical analysis methods are used to determine the key temperature parameters of hot rolling and processing in continuous annealing units (CAU). It is found that corrosion resistance depends on the speed of strip movement in a CAU, and temperatures at the exit from the heating and holding sections. It is shown that corrosion rate is mainly determined by the state of solid solution formed in the over-ageing sections of the CAU and during subsequent cooling. With a reduction in strip movement rate the ageing processes develop to a greater extent leading to formation of carbon segregations at dislocations that play the role of anodic areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

References

  1. N. Gope, D. K. Rout, S. Mukherjee, G. Jha, A. N. Bhagat, A. K. Verma, D. Bhattacharjee, and A. K. Srivastava, “High strength steels for automotive applications: recent trends and experience at Tata Steel,” Soc. Autom. Eng., 26, 333–344 (2005); https://doi.org/10.4271/2005-26-333.

    Article  Google Scholar 

  2. S. B. Lyon, “Corrosion of carbon and low alloy steels.,” in: Shreir’s Corrosion, J. A. Richardson, Ed., Elsevier Science, Oxford (2009); https://doi.org/10.1016/b978-044452787-5.00190-6.

  3. M. B. Kannan, R. K. Singh Raman, and S. Khoddam, “Comparative studies on the corrosion properties of a Fe–Mn–Al–Si steel and an interstitial free steel,” Corros. Sci., 50, 2879–2884 (2008); https://doi.org/10.1016/j.corsci.2008.07.024.

    Article  CAS  Google Scholar 

  4. G. P. Singh, A. P. Moon, S. Sengupta, G. Deo, S. Sangal, and K. Mondal, “Corrosion behavior of IF steel in various media and its comparison with mild steel,” J. of Mater. Eng. and Perform. 24, 1961–1974 (2015); https://doi.org/10.1007/s11665-015-1448-7.

    Article  CAS  Google Scholar 

  5. B. Hazdima, M. Janecek, Y. Estrin, and H. S. Kim, “Microstructure and corrosion properties of ultrafine-grained interstitial free steel,” Mater. Sci. Eng. A, 462, 243–247 (2007); https://doi.org/10.1016/j.msea.2005.11.081.

    Article  CAS  Google Scholar 

  6. L. Q. Guo, X. M. Zhao, B. C. Wang, Y. Bai, B. Z. Xu, and L. J. Qiao, “The initial stage of atmospheric corrosion on interstitial free steel investigated by in situ SPM,” Corros. Sci., 70, 188–193 (2013); https://doi.org/10.1016/j.corsci.2013.01.028.

    Article  CAS  Google Scholar 

  7. S. Ghosh, A. K. Singh, S. Mula, P. Chanda, V. V. Mahashabde, and T. K. Roy, “Mechanical properties, formability and corrosion resistance of thermomechanically controlled processed Ti–Nb stabilized IF steel,” Mater. Sci. Eng. A, 684, 22–36 (2017); https://doi.org/10.1016/j.msea.2016.12.034

  8. I. G. Rodionova, E. T. Shapovalov, M. E. Kovalevskaya, et al., “Increasing the resistance of automobile sheet to atmospheric corrosion by optimizing its chemical composition and the parameters of the manufacturing process,” Metallurgist, 49, 314–323 (2005); https://doi.org/10.1007/s11015-005-0098-7.

    Article  CAS  Google Scholar 

  9. I. G, Rodionova, O. N. Baklanova, A. I. Zaitsev, M. E. Marzoeva, et al., “Study of factors controlling corrosion resistance of low-alloy automobile sheet steels,” Probl. Chern. Met. Materailaoved., No. 2, 45–55 (2010).

  10. A. V. Amezhnov, I. G. Rodionova, A. I. Zaitsev, E. I. Zarkova, and M. E. Marzoeva, “Features of the effect of nonmetallic inclusion properties , phase precipitates on corrosion resistance of low-carbon and ultralow carbon steels,” Probl. Chern. Met. Materialoved., No. 1, 58–69 (2019).

  11. É. T. Shapolvalov, I. G, Rodionova, A. I. Zaitsev, M. E. Kovalevskaya, O. N. Baklanova, et al., “Factors governing corrosion resistance and other used properties of cold-rolled product,” Probl. Chern. Met. Materialoved., No. 3, 68–76 (2009).

  12. A. S. Mel’nichenko, Statistical Analysis in Metallurgy and Materials Science [in Russian], ID MISiS, Moscow (2009).

  13. I. G. Rodionova, A. V. Amezhnov, N. G. Shaposhnikov, Y. S. Gladchenkova, and D. L. D’yakonov, “Features of the effect of microstructure characteristics on corrosion resistance of cold rolled high-strength low-alloy steels (HSLA) grade 260–300 for automobile building,” Metallurgist, 63, 920–932 (2020); https://doi.org/10.1007/s11015-020-00910-3.

  14. N. P. Zhuk, Corrosion Course and Metal Protection [in Russian], Metallurgiya, Moscow (1968).

  15. K. D. Ralston and N. Birbilis, “Effect of grain size on corrosion: a review,” Corrosion, 66, No. 7, 075005–075005-13 (2010); https://doi.org/10.5006/1.3462912.

  16. F. Dong, F. Xue, L. Du, and X. Liu, “Promoting Ti4C2S2 strain induced precipitation during asymmetrical hot rolling to improve r value and advantaged texture in Ti stabilized IF steel,” J. Alloys Comp., 620, 240–248 (2015); https://doi.org/10.1016/j.jallcom.2014.09.136.

    Article  CAS  Google Scholar 

  17. A. I. Zaitsev, I. G. Rodionova, A. V. Koldaev, and N. A. Arutyunyan, “Effect of hot rolling regimes on solid solution structure, state and properties of titanium-stabilized IF-steel hot-rolled and cold-rolled product,” Metallurgist, 64, 136–144 (2020); https://doi.org/10.1007/s11015-020-00975-0.

    Article  CAS  Google Scholar 

  18. V. K. Babich, Yu. P. Gul’, and I. E. Dolzhenkov, Steel Strain Ageing [in Russian], Metallurgiya, Moscow (1972).

  19. A. R. Mishet’yan, I. P. Shabalov, O. N. Chevskaya, and G. A. Filippov, “Study of the mechanism for change in structural state during strain ageing and its effect on bainitic type pipe steel properties,” Chern.Met. Byul. NTiÉI, No. 9, 77–92 (2018); https://doi.org/10.32339/0135-5910-2018-9-77-92.

  20. A. I. Zaitsev, I. G. Rodionova, A. V. Koldaev, and I. N. Chirkina, “Study of the effect of recrystallization annealing regimes in continuous operating units on the state of IF-steel solid solution and mechanical properties,” Metallurgist, 64, 334–341 (2020); https://doi.org/10.1007/s11015-020-01000-0.

    Article  CAS  Google Scholar 

  21. I. G. Rodionova, N. A. Karamysheva, A. A. Pavlov, A. S. Mel’nichenko, V. E. Telegin, et al., “Study of the effect of chemical composition and production parameters on the properties of cold-rolled product of low-alloy steel (type HSLA) after continuous annealing with use of statistical analysis methods,” Proble. Chern. Met. Materialoved., No. 1, 79–91 (2019).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. G. Rodionova.

Additional information

Translated from Metallurg, Vol. 66, No. 1, pp. 23–31, January, 2022. Russian DOI: https://doi.org/10.52351/00260827_2022_01_23.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodionova, I.G., Amezhnov, A.V., Mel’nichenko, A.S. et al. Effect of Production Technological Parameters on Corrosion Resistance of Ultralow-Carbon Cold-Rolled IF-Steels. Metallurgist 66, 19–32 (2022). https://doi.org/10.1007/s11015-022-01319-w

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11015-022-01319-w

Keywords

Navigation