Skip to main content
Log in

Comparative study on the corrosion behavior of the cold rolled and hot rolled low-alloy steels containing copper and antimony in flue gas desulfurization environment

  • Published:
The Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

The correlation between the corrosion and microstructual characteristics of cold rolled and hot rolled low-alloy steels containing copper and antimony was established. The corrosion behavior of the specimens used in flue gas desulfurization systems was examined by electrochemical and weight loss measurements in an aggressive solution of 16.9 vol % H2SO4 + 0.35 vol % HCl at 60°C, pH 0.3. It has been shown that the corrosion rate of hot rolled steel is lower than that of cold rolled steel. The corrosion rate of cold rolled steel was increased by grain refinement, inclusion formation, and preferred grain orientation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Gardner, N. Saari, and F. Wang, “Comparative experimental study of hot-rolled and cold-formed rectangular hollow sections,” Thin-Walled Struct. 48, 495–507 (2010).

    Article  Google Scholar 

  2. Yégen and M. Usta, “The effect of salt bath cementation on mechanical behavior of hot-rolled and colddrawn SAE 8620 and 16MnCr5 steels,” Vacuum 85, 390–396 (2010).

    Article  Google Scholar 

  3. D. Clover, B. Kinsella, B. Pejcic, and R. D. Marco, “The influence of microstructure on the corrosion rate of various carbon steel,” J. Appl. Electrochem. 35, 139–149 (2005).

    Article  Google Scholar 

  4. K. D. Ralston and N. Birbilis, “Effect of grain size on corrosion: A review”, Corrosion 66, 075005–1075005-13 (2010).

    Article  Google Scholar 

  5. A. Balakrishnan, B. C. Lee, T. N. Kim, and B. B. Panigrahi, “Corrosion behavior of ultra fine grained titanium in simulated body fluid for implant application,” Trends Biomater. Artif. Organs 22, 58–64 (2008).

    Google Scholar 

  6. E. Kus, Z. Lee, S. Nutt, and F. Mansfeld, “A comparison of the corrosion behavior of nanocrystalline and conventional Al 5083 samples,” Corrosion 62, 152–161 (2006).

    Article  Google Scholar 

  7. M. K. Chung, Y. S. Choi, J. G. Kim, Y. M. Kim, and J. C. Lee, “Effect of the number of ECAP10 pass time on the electrochemical properties of 1050 Al alloys,” Mater. Sci. Eng., A 366, 282–291 (2004).

    Article  Google Scholar 

  8. R. J. Hellmig, M. Janecek, B. Hadzima, O. V. Gendelman, M. Shapiro, X. Molodova, A. Springer, and Y. Estrin, “A portrait of copper processed by equal channel angular pressing,” Mater. Trans. 49, 31–37 (2008).

    Article  Google Scholar 

  9. I. I. Reformatskaya and L. I. Freiman, “Precipitation of sulfide inclusions in steel structure and their effect on local corrosion process,” Prot. Met. 37, 511–516 (2001).

    Article  Google Scholar 

  10. G. Wranglen, “Review article on the influence of sulphide inclusions on the corrodibility or Fe and steel,” Corros. Sci. 9, 558–602 (1969).

    Google Scholar 

  11. R. D. Knutsen and A. Ball, “The influence of inclusions on the corrosion behavior of a 12 wt % chromium steel,” Corrosion 47, 359–368 (1991).

    Article  Google Scholar 

  12. J. J. Gray, B. S. EI Dasher, and C. A. Orme, “Competitive effects of metal dissolution and passivation modulated by surface structure: An AFM and EBSD study,” Surf. Sci. 600, 2488–2494 (2006).

    Article  Google Scholar 

  13. J. V. Cathcart, G. F. Petersen, and C. J. Sparks, “The structure of thin oxide films formed on nickel crystals,” J. Electrochem. Soc. 116, 664–668 (1969).

    Article  Google Scholar 

  14. N. N. Khoi, W. W. Smeltzer, and J. D. Embury, “Growth and structure of nickel oxide on nickel crystal faces,” J. Electrochem. Soc. 122, 1495–1503 (1975).

    Article  Google Scholar 

  15. U. Konig and B. Davepon, “Microstructure of polycrystalline Ti and its microelectrochemical properties by means of electron-backscattering diffraction (EBSD),” Electrochim. Acta 47, 149–160 (2001).

    Article  Google Scholar 

  16. K. R. Lawless and A. T. Gwathmey, “The structure of oxide films on different faces of a single crystal of copper,” Acta. Metall. 4, 153–163 (1956).

    Article  Google Scholar 

  17. C. A. Schuh, K. Anderson, and C. Orme, “Rapid assessment of anisotropic surface processes: experiments on the corrosion of Inconel 600,” Surf. Sci. 544, 183–192 (2003).

    Article  Google Scholar 

  18. C. Xu, M. Hassel, H. Kuhlenbeck, and Feund, “Adsorption and reaction on oxide surfaces: NO, NO2 on Cr2O3(111)/Cr(110),” Surf. Sci. 258, 23–34 (1991).

    Article  Google Scholar 

  19. T. Barsotti, J. M. Bermond, and M. Drechsler, “A measurement of the surface energy anisotropy of nickel by transmission electron microscopy of field emitter crystals,” Surf. Sci. 146, 467–479 (1984).

    Article  Google Scholar 

  20. F. Young and F. Cathcart, “The rates of oxidation of several faces of a single crystal of copper as determined with elliptically polarized light,” Acta. Metall. 4, 145–152 (1967).

    Article  Google Scholar 

  21. J. P. Pemsler, “Studies on the Oxygen Gradients in Oxidizing Metals: I. Zirconium,” J. Electrochem. Soc. 111, 381–385 (1964).

    Article  Google Scholar 

  22. S. A. Park, W. S. Ji, and J. G. Kim, “Effect of chromium on the corrosion behavior of low-alloy steels containing copper in FGD environment,” Int. J. Electrochem. Sci. 8, 7498–7509 (2013).

    Google Scholar 

  23. D. P. Le, W. S. Ji, J. G. Kim, K. J. Jeong, and S. H. Lee, “Effect of antimony on the corrosion behavior of lowalloy steel for flue gas desulfurization,” Corros. Sci. 50, 1195–1204 (2008).

    Article  Google Scholar 

  24. ASTM G 1-90, Standard Practice for Preparing, Cleaning, and Evaluating Corrosion Test Specimens (Annual Book of ASTM Standards) (West Conshohocken, USA, 2002).

  25. ASTM G 31-72, Standard Practice for Laboratory Immersion Corrosion Testing of Metals (Annual Book of ASTM Standards) (West Conshohocken, USA, 2002).

  26. D. A. Jones, Principles and Prevention of Corrosion (Prentice Hall, Upper Saddle River, NJ, 1996).

    Google Scholar 

  27. S. A. Park, J. G. Kim, and J. B. Yoon, “Effect of W, Mo and Ti on the corrosion behavior of low alloy steel in sulfuric acid,” Corrosion 70, 196–205 (2014).

    Article  Google Scholar 

  28. G. A. Zhang and Y. F. Cheng, “On the fundamentals of electrochemical corrosion of X65 steel in CO2-containing formation water in the presence of acetic acid in petroleum production,” Corros. Sci. 51, 87–94 (2009).

    Article  Google Scholar 

  29. D. D. Macdonald, “A method for estimating impedance parameters for electrochemical systems that exhibit pseudoinductance,” J. Electrochem. Soc. 125, 2062–2064 (1978).

    Article  Google Scholar 

  30. X. Guo, H. Imaizumi, and K. Katoh, “The behavior of passive films on carbon steel in sulfuric acid solutions,” J. Electroanal. Chem. 383, 99–104 (1995).

    Article  Google Scholar 

  31. C. D. Wagner, J. F. Moulder, L. E. Davis, and W. M. Riggs, Handbook of X-ray Photoelectron Spectroscopy (Physical Electronics Division, Minnesota, 1979).

    Google Scholar 

  32. J. H. Hong, S. H. Lee, J. G. Kim, and J. B. Yoon, “Corrosion behavior of copper containing low alloy steels in sulphuric acid,” Corros. Sci. 54, 174–182 (2012).

    Article  Google Scholar 

  33. Y. S. Choi, J. J. Shim, and J. G. Kim, “Effect of Cr, Cu, Ni and Ca on the corrosion behavior of low carbon steel in synthetic tap water,” J. Alloys Compd. 391, 162–169 (2005).

    Article  Google Scholar 

  34. M. Pourbaix, Atlas of Electrochemical Equilibria in Aqueous Solution (Nation. Assoc. Corros. Eng., Houston, 1974).

    Google Scholar 

  35. A. L. Pitman, M. Pourbaix, and N. Zoubov, “Potential-PH diagram of the antimony-water system — Its applications to properties of the metal, its compounds, its corrosion, and antimony electrodes,” J. Electrochem. Soc. 104, 594–600 (1957).

    Article  Google Scholar 

  36. N. D. Nam and J. G. Kim, “Effect of niobium on the corrosion behavior of low alloy steel in sulphuric acid solution,” Corros. Sci. 52, 14–20 (2010).

    Article  Google Scholar 

  37. R. F. North and M. J. Pryor, “The nature of protective films formed on a Cu-Fe alloy,” Corros. Sci. 9, 509–517 (1969).

    Article  Google Scholar 

  38. Y. Li, F. Wang, and G. Liu, “Grain size effect on the electrochemical corrosion behavior of surface nanocrystallized low-carbon steel,” Corrosion 60, 891–896 (2004).

    Article  Google Scholar 

  39. E. Aghemenloh, J. O. Umukoro, S. O. Azi, S. Yusuf, and J. O. A. Idiodi, “Surface energy calculation of BCC metals using the analytical equivalent crystal theory method,” Compt. Mater. Sci. 50, 3290–3296 (2011).

    Article  Google Scholar 

  40. J. J. Gray, B. S. El Dasher, and C. A. Orme, “Competitive effects of metal dissolution and passivation modulated by surface structure: An AFM and EBSD study of the corrosion of alloy,” Surf. Sci. 600, 2488–2494 (2006). (cf. [12])

    Article  Google Scholar 

  41. R. F. Ashton and M. T. Hepworth, “Effect of crystal orientation on the anodic polarization and passivity of zinc,” Corrosion 24, 50–53 (1968).

    Article  Google Scholar 

  42. H. Park and J. A. Szpunar, “The role of texture and morphology in optimizing the corrosion resistance of zinc-based electrogalvanized coatings,” Corros. Sci. 40, 525–545 (1998).

    Article  Google Scholar 

  43. J. L. Weininger and M. W. Breiter, “Effect of crystal structure on the anodic oxidation of nickel,” J. Electrochem. Soc. 10, 484–490 (1963).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. G. Kim.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, S.A., Kim, J.G., He, Y.S. et al. Comparative study on the corrosion behavior of the cold rolled and hot rolled low-alloy steels containing copper and antimony in flue gas desulfurization environment. Phys. Metals Metallogr. 115, 1285–1294 (2014). https://doi.org/10.1134/S0031918X14130201

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X14130201

Keywords

Navigation