Skip to main content
Log in

Principles of Creating New Economically Alloyed Ferritic Steels with a Unique Set of Properties

  • Published:
Metallurgist Aims and scope

On the basis of research results it is shown that provision of good strength indices, ductility, forgeability, and operating reliability that are difficult to combine may be provided simultaneously in hot-worked steels by obtaining a uniform finely dispersed ferritic structure and a volumetric system of nano-sized mainly interphase carbide precipitates. These steels have an extremely economical alloying system and simple manufacturing technology providing the possibility of obtaining hot-rolled sheet with thickness up to 1.8 mm and hot-dip zinc coating application. Initially in ferritic steels microalloying with Ti and Mo is used, although the possibility of using a complexly alloyed system of V, Nb, Ti, and Mo is demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

References

  1. A. I. Zaitsev, I. G. Rodionova, S. V. Yashchuk, et al., “Development of scientific and technological bases of automobile steel production,” Chern. Met.: Byul. NTiÉI, No. 3(1359), 89–109 (2013).

    Google Scholar 

  2. N. Fonstein, Advanced High Strength Sheet Steels: Physical Metallurgy, Design, Processing and Properties, Springer International Publishing, Switzerland (2015).

    Book  Google Scholar 

  3. K. Hasegawa, K. Kawamura, T. Urabe, and Y. Hosoya, “Effects of microstructure on stretch-flange-formability of 980 MPa grade cold-rolled ultra high strength steel sheets,” ISIJ Int., 44, No. 3, 603–609 (2004).

    Article  CAS  Google Scholar 

  4. A. I. Zaitsev, I. G. Rodionova, A. A. Pavlov, et al., “Effect of composition, structural state, and manufacturing technology on service properties of high-strength low-carbon steel main bimetal layer,” Metallurgist, 59, No. 7, 684–492 (2015).

    Article  CAS  Google Scholar 

  5. Y. Funakawa, T. Fujita, and K. Yavada, “Metallurgical features of NANOHITEN and application to warm stamping,” JFE Technical Report, No. 18, 74–79 (2013).

  6. F. A. Khalid and D. V. Edmonds, “Interphase precipitation in microalloyed engineering steels and model alloy,” Mater. Sci. Technol., 9, 384–396 (1993).

    Article  CAS  Google Scholar 

  7. K. Seto, Y. Funakawa, and S. Kaneko, “Hot rolling high strength steels for suspension and chassis parts “NANOHITEN” and “BTH steels,” JFE Technical Report, No. 10, 19–25 (2007).

  8. Y. Funakawa, T. Shiozaki, K. Tomita, et al., “Development of high strength hot-rolled sheet steel consisting of ferrite and nanometer-sized carbides,” ISIJ Int., 44, 1945–1951 (2004).

    Article  CAS  Google Scholar 

  9. N. G. Shaposhnikov, A. V. Koldaev, A. I. Zaitsev, et al., “Features of titanium carbide precipitation in low carbon high strength steels microalloyed with titanium and molybdenum,” Metallurgist, 69, Nos. 7–8, 810–816 (2016).

    Article  Google Scholar 

  10. C. Y. Chen, H. W. Yen, F. H. Kao, et al., “Precipitation hardening of high-strength low-alloy steels by nanometer-sized carbides,” Mater. Sci. Eng. A, 499, 162–166 (2009).

    Article  Google Scholar 

  11. R. Lagneborg and S. Zajac, “A model for interphase precipitation in V-microalloyed structural steels,” Metall. Mater. Trans. A, 32, No. 1, 39–60 (2001).

    Article  Google Scholar 

  12. C. Y. Chen, C. C. Chen, and J. R. Yang, “Microstructure characterization of nanometer carbides heterogeneous precipitation in Ti–Nb and Ti–Nb–Mo steel,” Mater. Charact., 88, 69–79 (2014).

    Article  CAS  Google Scholar 

  13. F. Z. Bu, X. M. Wang, S. W. Yang, et al., “Contribution of interphase precipitation on yield strength in thermomechanically simulated Ti–Nb and Ti–Nb–Mo microalloyed steels,” Mater. Sci. Eng. A, 620, 22–29 (2014).

    Article  CAS  Google Scholar 

  14. Z. Wang, H. Zhang, C. Guo, et al., “Effect of molybdenum addition on the precipitation of carbides in the austenite matrix of titanium micro-alloyed steels,” J. Mat. Sci., 51, 4996–5007 (2016).

    Article  CAS  Google Scholar 

  15. K. Zhang, L. Zhaodong, W. Zhenqiang, et al., “Precipitation behavior and mechanical properties of hot-rolled high strength Ti–Mobearing ferritic sheet steel: The great potential of nanometer-sized (Ti, Mo)C carbide,” J. Mater. Res., 31, No. 9, 1254–1263 (2016).

    Article  CAS  Google Scholar 

  16. X. Deng, T. Fu, Z. Wang, et al., “Extending the boundaries of mechanical properties of Ti–Nb low-carbon steel via combination of ultrafast cooling and deformation during austenite-to ferrite transformation,” Met. Mater. Int., 23, No. 1, 175–183 (2017).

    Article  CAS  Google Scholar 

  17. N. Kamikawa, K. Sato, G. Miyamoto, et al., “Stress–strain behavior of ferrite and bainite with nano-precipitation in low carbon steels,” Acta Mater., 83, 383–386 (2015).

    Article  CAS  Google Scholar 

  18. A. Rijkenberg, A. Blowey, P. Bellina, and C. Wooffindin, “Advanced high stretch-flange formability steels for chassis & suspension applications,” Proc. 4th Int. Conf. on Steels in Cars and Trucks SCT2014 (Braunschweig, Germany, 15–19 June 2014).

  19. M. I. Gol’dshtein, S. V. Grachev, and Yu. G. Veksler, Special Steels [in Russian], MISiS, Moscow (1999).

    Google Scholar 

  20. F. B. Pickering, Physical Metallurgy and Steel Development [Russian translation], Metallurgiya, Moscow (1982).

    Google Scholar 

  21. R. Wang, C. I. Garcia, M. Hua, et al., “Microstructure and precipitation behavior of Nb, Ti complex microalloyed steel produced by compact strip processing,” ISIJ Int., 46, No. 9, 1345–1353 (2006).

    Article  CAS  Google Scholar 

  22. T. Gladman, “Precipitation hardening in metals,” Mater. Sci. and Technol., 15, 30–36 (1999).

    Article  CAS  Google Scholar 

  23. N. Kamikawa, Y. Abe, G. Miyamoto, et al., “Tensile behavior of Ti, Mo-added low carbon steels with interphase precipitation,” ISIJ Int., 54, No. 1, 212–221 (2014).

    Article  CAS  Google Scholar 

  24. A. V. Koldaev, D. L. D’yakonov, A. I. Zaitsev, and N. A. Arutyunyan, “Kinetics of the formation of nanosize niobium carbonitride precipitates in low-alloy structural steels,” Metallurgist, 60, No. 9–10, 1032–1037 (2017).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Zaitsev.

Additional information

Translated from Metallurg, Vol. 62, No. 6, pp. 45–52, June, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zaitsev, A.I., Koldaev, A.V., Arutyunyan, N.A. et al. Principles of Creating New Economically Alloyed Ferritic Steels with a Unique Set of Properties. Metallurgist 62, 532–540 (2018). https://doi.org/10.1007/s11015-018-0690-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11015-018-0690-2

Keywords

Navigation