Skip to main content
Log in

Use of Heterogenization for Improving Alloy AA5083 Superplasticity Indices

  • Published:
Metallurgist Aims and scope

The microstructure and superplasticity indices are compared for specimens of alloy AA5083 prepared by two technologies: using intermediate heterogenization annealing and without it. As a result of heterogenization β -phase is separated that during recrystallization stimulates new grain growth, and therefore the grain size within specimens is smaller by almost a factor of two than for specimens not subjected to annealing. Use of heterogenization annealing provides a relative elongation up to 650% at 550°C and a constant strain rate of 1·10−3 sec−1, and lower residual porosity. Sheet prepared by this technology makes it possible to increase forming rate by several factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

References

  1. H. H. Chen, J. Y. Wang, J. Lee, and S. Lee, “Superplasticity of AA5083 alloy as processed by equal channel angular extrusion,” J. Alloys and Compounds, 460, 305–308 (2008).

    Article  CAS  Google Scholar 

  2. K. T. Park, D. Y. Hwang, Y. K. Lee, et al., “High strain rate superplasticity of submicrometer grained 5083 Al alloy containing scandium fabricated by severe plastic deformation,” Mater. Sci. and Eng. A, A341, 273–281 (2003).

    Article  CAS  Google Scholar 

  3. N. E. Prasad and R. J. H. Wanhill, Aerospace Materials and Material Technologies, Vol. 1: Aerospace Materials (2017).

  4. A. V. Mikhailovskaya, V. K. Portno, A. D. Kotov, et al., “Effect of adding chromium on internal friction and superplasticity of alloys of the Al–Mg system,” Metal Science and Heat Treatment, 54, No. 5-6, 276-280 (2012).

    Article  CAS  Google Scholar 

  5. R. L. Hecht, K. Kannan in: A. K. Gosh and T. R. Bieler T.R. (editors), Superplasticity and Superplastic Forming, TMS, Warrendale, PA (1995).

  6. Microstructure and Properties of Materials, Edited by: Li J.C.M. USA: University of Rochester (1996).

    Google Scholar 

  7. S. J. Hosseinipour, “An investigation into hot deformation of aluminum alloy 5083,” Materials and Design, 30, 319–322 (2009).

    Article  CAS  Google Scholar 

  8. D. Y. Maeng, J. H. Lee, and S. I. Hong, “The effect of transition elements on the superplastic behavior of Al–Mg alloys,” Mat. Sci. Eng., A357, 188–195 (2003).

    Article  CAS  Google Scholar 

  9. C. Xu, Z. Horita, M. Furukawa, and T. G. Langdon, “Using equal-channel angular pressing for the production of superplastic aluminum and magnesium alloys,” J. Mater. Eng. Perform, 13, 683–690 (2004).

    Article  CAS  Google Scholar 

  10. A. V. Pozdnyakova and V. K. Portnoi, “Aspect of structural variations in superplastic strain of alloy AMg4,” Russian J. Non-Ferrous Metals, 45, No. 1, 31–36 (2004).

    Google Scholar 

  11. S. Y. Chang, B. D. Ahn, S. K. Hong, et al., “Tensile deformation characteristics of a nano-structured 5083 Al alloy,” J. Alloys Compd., 386, 197–201 (2005).

    Article  CAS  Google Scholar 

  12. K. Kannan, J. S. Vetrano, and C. H. Hamilton, “Effects of alloy modification and thermomechanical processing on recrystallization of Al–Mg–Mn alloys,” Metal. Mater. Trans. A, 27A, 2947–2957 (1996).

    Article  CAS  Google Scholar 

  13. O. Engler and S. Miller-Jupp, “Control of second-phase particles in the Al–Mg–Mn alloy AA 5083,” J. Alloys and Compounds, 689, 998–1010 (2016).

    Article  CAS  Google Scholar 

  14. A. V. Mikhaylovskaya, V.K. Portnoy, A. G. Mochugovskiy, et al., “Effect of homogenisation treatment on precipitation, recrystallization and properties of Al – 3% Mg – TM alloys (TM = Mn, Cr, Zr),” Materials & Design, 109, 197–208 (2016).

    Article  CAS  Google Scholar 

  15. V. K. Portnoy, D. S. Rylov, V. S. Levchenko, and A. V. Mikhaylovskaya, “The influence of chromium on the structure and superplasticity of Al–Mg–Mn alloys,” J. Alloys and Compounds, 581, 313–317 (2013).

    Article  CAS  Google Scholar 

  16. D. H. Shin and W.-J. Kim, “Superplasticity of fine-grained 7475 Al alloy and a proposed new deformation mechanism,” Acta Mater., 45, No. 12, 5195–5202 (1997).

    Article  CAS  Google Scholar 

  17. A. Smolej, M. Gnamuš, and E. Slaček, “The influence of the thermomechanical processing and forming parameters on superplastic behavior of the 7475 aluminum alloy,” J. Mater. Proc. Technology, 118, No. 1-3, 397–402 (2001).

    Article  CAS  Google Scholar 

  18. M. S. Kishchik, A. V. Mikhailovskaya, V. S. Levchenko, et al., “Formation of fine-grained structure and superplasticity in commercial aluminum alloy 1565ch,” Metal Sci. and Heat Treatment., 58, No. 9, 543–547 (2017).

    Article  CAS  Google Scholar 

  19. A. A. Kishchik, A. V. Mikhaylovskaya, V. S. Levchenko, and V. K. Portnoy, “Formation of microstructure and the superplasticity of Al–Mg-based alloys,” Physics Metals and Metallography, 118, 96–103 (2017).

    Article  CAS  Google Scholar 

  20. E. N. Chumachenko, V. K. Portnoi, and I. V. Logashina, “Mechanical tests and construction of analytical models of the behavior of materials under superplastic conditions. Part II,” Metallurgist, 59, 69–75 (2015).

    Article  CAS  Google Scholar 

  21. A. V. Mikhaylovskaya, O. A. Yakovtseva, I. S. Golovin, et al., “Superplastic deformation mechanisms in fine-grained Al–Mg based alloys,” Mater. Sci. & Eng. A, 627, 31–41 (2015).

    Article  CAS  Google Scholar 

  22. Z. C. Wang, T. J. Davies, and N. Ridle, “Effect of porosity on the superplasticity of an alumina,” Scr. Metallurg. Mater., 30, No. 3, 355–359 (1994).

    Article  CAS  Google Scholar 

  23. H. Xiang, Q. L. Pan, X. H. Yu, et al., “Superplasticity behavior of Al–Zn–Mg–Zr cold-rolled alloy sheet with minor Sc addition,” Mater. Sci. and Eng. A, 676, 128–137 (2016).

    Article  CAS  Google Scholar 

  24. S. Sagat and D. M. R. Taplin, “Fracture of a superplastic ternary brass,” Acta Metall., 24, No. 4, 307–315 (1976).

    Article  CAS  Google Scholar 

  25. C. W. Humphries and N. Ridley, “Cavitation during the superplastic deformation of an α/β brasses,” J. Mater. Sci., 13, No. 11, 2477–2482 (1978).

    Article  CAS  Google Scholar 

  26. O. A. Yakovtseva, A. V. Mikhailovskaya, A. D. Kotov, and V. K. Portnoi, “Effect of alloying on superplasticity of two-phase brasses,” Phys. Metals and Metallography, 117, No. 7, 742–748 (2016).

    Article  CAS  Google Scholar 

  27. O. A. Yakovtseva, A. V. Mikhailovskaya, A. V. Pozdniakov, et al., “Superplastic deformation behaviour of aluminium containing brasses,” Mater. Sci. & Eng. A, 674, 135–143 (2016).

    Article  CAS  Google Scholar 

Download references

Work was performed with financial support of the RF Ministry of Education and Science within the scope of the main part of a state2 assignment for higher education establishments for 2017-2019 No. 11.7172.2017/8.9.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. K. Portnoi.

Additional information

Translated from Metallurg, Vol. 62, No. 5, pp. 45–49, May 2018. Original article submitted June 27, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Portnoi, V.K., Yakovtseva, O.A., Kishchik, A.A. et al. Use of Heterogenization for Improving Alloy AA5083 Superplasticity Indices. Metallurgist 62, 449–455 (2018). https://doi.org/10.1007/s11015-018-0680-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11015-018-0680-4

Keywords

Navigation