Skip to main content
Log in

Effect of Plastic Anisotropy on the Kinetics of Static Softening in AA2024–T3 Aluminum Alloy

  • Published:
Metals and Materials International Aims and scope Submit manuscript

This article has been updated

Abstract

The influence of plastic anisotropy on the static softening kinetics after cold forming in the AA2024–T3 aluminum alloy sheet was investigated. The uniaxial tensile tests were carried out at room temperature in three directions 0°, 45° and 90° in relation to the rolling direction, at 8% strain level. The samples were then annealed at 350 °C for various holding times. The softening data were analyzed using the Johnson–Mehl–Avrami–Kolmogorov (JMAK) method, and the Avrami's exponent \(n\) and rate constant \(k\) for each testing condition. The grain growth kinetics followed a power law behavior with an exponent coefficient \({n}_{g}\) and a Hall–Petch type relationship was found between the grain size and microhardness evolution. The results showed that the conventional JMAK equation could not accurately model the static softening kinetics of AA2024–T3. Moreover, the Avrami's exponent n and rate constant \(k\) determined from the modified JMAK equation containing an impingement parameter, the \({n}_{g}\) parameter from the grain growth power law and the Hall–Petch parameters were found to be different with the three directions. To validate the influence of plastic anisotropy on static softening, microstructure and microtexture characterization was carried out using a combination of Vickers microhardness tests, laser confocal microscopy, scanning electron microscopy, and electron backscatter diffraction before and after annealing.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Availability of Data and Materials

The raw/processed data required to reproduce these findings cannot be shared at this time as the data also forms part of an ongoing study.

Change history

  • 17 September 2022

    The Corrupted Graphical Abstract has been corrected

References

  1. J.F. Li, Z. Ziqiao, J. Na, T. Chengyu, Mater. Chem. Phys. 91, 325 (2005)

    Article  CAS  Google Scholar 

  2. X. Xu, Y. Zhao, B. Ma, M. Zhang, J. Alloy. Compd. 610, 506 (2014)

    Article  CAS  Google Scholar 

  3. X. Qian, N. Parson, X.-G. Chen, J. Mater. Sci. Technol. 52, 189 (2020)

    Article  Google Scholar 

  4. R.D. Doherty, D.A. Hughes, F.J. Humphreys, J.J. Jonas, D.J. Jensen, M.E. Kassner, W.E. King, T.R. McNelley, H.J. McQueen, A.D. Rollett, Mater. Sci. Eng. A 238, 219 (1997)

    Article  Google Scholar 

  5. H. Hallberg, Metals 1, 16 (2011)

    Article  CAS  Google Scholar 

  6. Y. Huang, F.J. Humphreys, Acta Mater. 47, 2259 (1999)

    Article  CAS  Google Scholar 

  7. M.S. Salehi, S. Serajzadeh, Comput. Mater. Sci. 69, 53 (2013)

    Article  CAS  Google Scholar 

  8. M.M. Attallah, M. Strangwood, C.L. Davis, Scripta Mater. 63, 371 (2010)

    Article  CAS  Google Scholar 

  9. K. Chen, J. Tang, F. Jiang, J. Teng, D. Fu, H. Zhang, J. Alloy. Compd. 792, 1112 (2019)

    Article  CAS  Google Scholar 

  10. D. Tsivoulas, P.B. Prangnell, Acta Mater. 77, 1 (2014)

    Article  CAS  Google Scholar 

  11. G. Bo, F. Jiang, H. Su, L. Wu, J. Teng, D. Fu, H. Zhang, Mater. Sci. Eng. A 778, 139094 (2020).

  12. C. Huang, X. Jia, Z. Zhang, Metals 8, 585 (2018)

    Article  CAS  Google Scholar 

  13. F. Jiang, H. Zhang, L. Li, J. Chen, Mater. Sci. Eng. A 552, 269 (2012)

    Article  CAS  Google Scholar 

  14. A. Farzadi, Materialwiss. Werkst. 46, 1218 (2015)

    Article  CAS  Google Scholar 

  15. J. Tang, H. Zhang, J. Teng, D. Fu, F. Jiang, J. Alloy. Compd. 806, 1081 (2019)

    Article  CAS  Google Scholar 

  16. W. Shen, C. Zhang, L. Zhang, Q. Xu, Y. Cui, Y. Xu, Vacuum 150, 116 (2018)

    Article  CAS  Google Scholar 

  17. H. Luo, Mater. Sci. Eng. A 532, 44 (2012)

    Article  CAS  Google Scholar 

  18. T. Matsui, T. Ogawa, Y. Adachi, Results Mater. 1, 100002 (2019)

  19. W.E. Frazier, S. Hu, N. Overman, R. Prabhakaran, C. Lavender, V.V. Joshi, J. Nucl. Mater. 513, 56 (2019)

    Article  CAS  Google Scholar 

  20. J.J. Li, J.C. Wang, Q. Xu, G.C. Yang, Acta Mater. 55, 825 (2007)

    Article  CAS  Google Scholar 

  21. J. Humphreys, G.S. Rohrer, A. Rollet, Recrystallization and Related Annealing Phenomena, 3rd edn. (Elsevier, Amsterdam, 2017), pp. 264–266

    Google Scholar 

  22. Y. Lü, D.A. Molodov, G. Gottstein, Acta Mater. 59, 3229 (2011)

    Article  CAS  Google Scholar 

  23. A.D. Murphy, J.E. Allison, Metall. Mater. Trans. A 49, 1492 (2018)

    Article  CAS  Google Scholar 

  24. M. Oyarzábal, A. Martínez-de-Guerenu, I. Gutiérrez, Mater. Sci. Eng. A 485, 200 (2008)

    Article  CAS  Google Scholar 

  25. H.W. Luo, L.Z. An, H.W. Ni, Mater. Sci. Forum. 558–559, 1139 (2007)

    Article  Google Scholar 

  26. N.X. Sun, X.D. Liu, K. Lu, Scripta Mater. 34, 1201 (1996)

    Article  CAS  Google Scholar 

  27. H. Luo, J. Sietsma, S. van der Zwaag, ISIJ Int. 44, 1931 (2004)

    Article  CAS  Google Scholar 

  28. Z. Huda, T. Zaharinie, J. Alloy. Compd. 478, 128 (2009)

    Article  CAS  Google Scholar 

  29. M. Annasamy, N. Haghdadi, A. Taylor, P. Hodgson, D. Fabijanic, Mater. Sci. Eng. A 754, 282 (2019)

    Article  CAS  Google Scholar 

  30. M. Furukawa, Z. Horita, M. Nemoto, R.Z. Valiev, T.G. Langdon, Acta Mater. 44, 4619 (1996)

    Article  CAS  Google Scholar 

  31. B. Chen, X. Xi, T. Gu, C. Tan, X. Song, J. Mater. Res. Technol. 9, 14223 (2020)

    Article  CAS  Google Scholar 

  32. Z. Li, L. Chen, J. Tang, G. Zhao, C. Zhang, X. Chu, Mater. Charact. 164, 110299 (2020)

  33. C.K.S. Moy, M. Weiss, J. Xia, G. Sha, S.P. Ringer, G. Ranzi, Mater. Sci. Eng. A 552, 48 (2012)

    Article  CAS  Google Scholar 

  34. M. Khadyko, C.D. Marioara, S. Dumoulin, T. Børvik, O.S. Hopperstad, Mater. Sci. Eng. A 708, 208 (2017)

    Article  CAS  Google Scholar 

  35. H. Hu, X. Wang, Metals 6, 79 (2016)

    Article  Google Scholar 

  36. X. Chen, G. Zhao, X. Xu, Y. Wang, J. Alloy. Compd. 862, 158102 (2021)

  37. A. Bois-Brochu, C. Blais, F.A.T. Goma, D. Larouche, J. Boselli, M. Brochu, Mater. Sci. Eng. A 597, 62 (2014)

    Article  CAS  Google Scholar 

  38. A. Bois-Brochu, C. Blais, F.A.T. Goma, D. Larouche, Mater. Sci. Eng. A 673, 581 (2016)

  39. E.-S. Lee, Y.G. Kim, Acta Metall. Mater. 38, 1669 (1990)

    Article  CAS  Google Scholar 

  40. X. Wang, H.E. Hu, J. Xia, Mater. Sci. Eng. A 515, 1 (2009)

    Article  CAS  Google Scholar 

  41. Z.J. Li, G. Winther, N. Hansen, Acta Mater. 54, 401 (2006)

    Article  CAS  Google Scholar 

  42. Y. Yao, C. Liu, Y. Gao, S. Yu, S. Jiang, Z. Chen, Mater. Charact. 144, 641 (2018)

    Article  CAS  Google Scholar 

  43. ASTM E8/E8M-21, Standard Test Methods for Tension Testing of Metallic Materials (ASTM International, West Conshohocken, 2021)

  44. S. Kurukuri, A. Miroux, H. Wisselink, T. van den Boogaard, Int. J. Mater. Form. 4, 129 (2011)

    Article  Google Scholar 

  45. W.F. Lankford, S. Snider, J.A. Bausch, Trans. Am. Soc. Metals. 42, 1197 (1950)

    Google Scholar 

  46. Y. Chastel, V. Nalewajk, R. Forestier, E. Massoni, Caractérisation du comportement anisotrope de tôles d’aluminium, in 40th Meeting of the French Group of Rheology, Nice, 26–28 October 2005

  47. C. Ji, Z. Li, J. Liu, Mech. Mater. 150, 103598 (2020)

  48. A.A. El-Aty, Y. Xu, S.-H. Zhang, S. Ha, Y. Ma, D. Chen, J. Adv. Res. 18, 19 (2019)

  49. B. Beausir, J. Scharnweber, J. Jaschinski, H.-G. Brokmeier, C.-G. Oertel, W. Skrotzki, Mater. Sci. Eng. A. 527, 3271 (2010)

    Article  CAS  Google Scholar 

  50. S.P. Chen, N.C.W. Kuijpers, S. van der Zwaag, Mater. Sci. Eng. A. 341, 296 (2003)

    Article  Google Scholar 

  51. A.A. Eliseev, S.V. Fortuna, E.A. Kolubaev, T.A. Kalashnikova, Mater. Sci. Eng. A. 691, 121 (2017)

    Article  CAS  Google Scholar 

  52. S.P. Chen, D.N. Hanlon, S. van der Zwaag, Y.T. Pei, J.T.M. Dehosson, J. Mater. Sci. 37, 989 (2002)

    Article  CAS  Google Scholar 

  53. M. Winning, C. Schäfer, Mater. Sci. Eng. A. 419, 18 (2006)

    Article  CAS  Google Scholar 

  54. V. Shah, M. Krugla, S.E. Offerman, J. Sietsma, D.N. Hanlon, ISIJ Int. 60, 1312 (2020)

    Article  CAS  Google Scholar 

  55. R. Badji, N. Kherrouba, B. Mehdi, B. Cheniti, M. Bouabdallah, C. Kahloun, B. Bacroix, Mater. Chem. Phys. 148, 664 (2014)

    Article  CAS  Google Scholar 

  56. E. Akbari, K.K. Taheri, A.K. Taheri, J. Mater. Eng. Perform. 27, 2049 (2018)

  57. J. Shen, T. Nagasaka, T. Muroga, Y. Li, H. Yang, S. Kano, H. Abe, Fusion Eng. Des. 146, 1082 (2019)

    Article  CAS  Google Scholar 

  58. F.J. Humphreys, M. Hatherly, Recrystallization and Related Annealing Phenomena, 2nd edn. (Pergamon, Oxford, 2004), pp. 446–449

  59. M. Verdier, Y. Brechet, P. Guyot, Acta Mater. 47, 127 (1998)

    Article  Google Scholar 

  60. P.N. Kalu, D.R. Waryoba, Mater. Sci. Eng. A. 464, 68 (2007)

    Article  CAS  Google Scholar 

  61. M. Somerday, F.J. Humphreys, Mater. Sci. Technol. 19, 20 (2003)

    Article  CAS  Google Scholar 

  62. Z. Wu, H. Bei, F. Otto, G.M. Pharr, E.P. George, Intermetallics 46, 131 (2014)

    Article  CAS  Google Scholar 

  63. W.H. Liu, Y. Wu, J.Y. He, T.G. Nieh, Z.P. Lu, Scripta Mater. 68, 526 (2013)

    Article  CAS  Google Scholar 

  64. J.E. Burke, D. Turnbull, Prog. Met. Phys. 3, 220 (1952)

    Article  CAS  Google Scholar 

  65. Y.S. Sato, M. Urata, H. Kokawa, K. Ikeda, Mater. Sci. Eng. A 354, 298 (2003)

    Article  CAS  Google Scholar 

  66. Y.H. Wang, J.M. Kang, Y. Peng, T.S. Wang, N. Hansen, X. Huang, Scripta Mater. 155, 41 (2018)

    Article  CAS  Google Scholar 

  67. W. Wang, A.-L. Helbert, T. Baudin, F. Brisset, R. Penelle, Mater. Charact. 64, 1 (2012)

    Article  CAS  Google Scholar 

  68. M.H. Alvi, S.W. Cheong, J.P. Suni, H. Weiland, A.D. Rollett, Acta Mater. 56, 3098 (2008)

    Article  CAS  Google Scholar 

  69. R.D. Doherty, Prog. Mater. Sci. 42, 39 (1997)

    Article  CAS  Google Scholar 

  70. R.D. Doherty, K. Kashyap, S. Panchanadeeswaran, Acta Metall. Mater. 41, 3029 (1993)

    Article  CAS  Google Scholar 

  71. S.W. Lee, S.H. Park, J. Alloy. Compd. 844, 156185 (2020)

  72. W.C. Liu, J.G. Morris, Mater. Sci. Eng. A 402, 215 (2005)

    Article  CAS  Google Scholar 

  73. E.M. Fayed, M. Saadati, D. Shahriari, V. Brailovski, M. Jahazi, M. Medraj, Sci. Rep. 11, 2020 (2021)

    Article  CAS  Google Scholar 

  74. S.-H. Kim, J.-H. Kang, K. Euh, H.-W. Kim, Met. Mater. Int. 21, 276 (2015)

    Article  CAS  Google Scholar 

  75. H. Guan, L. Zeng, Z. Li, L. Chai, Y. Zhu, Y. Wang, Q. Huang, K. Chen, L. Chen, N. Guo, Met. Mater. Int. 27, 384 (2021)

  76. H. Lee, H.W. Jeong, S.M. Seo, D.W. Yun, K. Park, K.H. Yim, Y.S. Yoo, Met. Mater. Int. 27, 691 (2021)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the faculty of physics, University of Sciences and Technology Houari Boumediene—Phase Transformation, Microstructure and Texture TPMT LPA group, the Research Center in Industrial Technologies, the “École de technologie supérieure”—CM2P research chair. We would like to thank Dr. Mohammad Saadati for EBSD characterization. Moreover, we heartily thank the Algerian company ETRAG ‘Entreprise des Tracteurs Agricoles’ for cutting the tensile samples with the laser cutting machine OMADA LCG 3015AJ. We thank the Natural Sciences and Engineering Research Council—NSERC and Programme National Exceptionel—PNE for the financial support.

Funding

The research was supported by Natural Sciences and Engineering Research Council of Canada—NSERC and Ministry of Higher Education and Scientific Research of Algeria under the “Programme National Exceptionnel”—PNE.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Jahazi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Houria, M., Matougui, N., Mehdi, B. et al. Effect of Plastic Anisotropy on the Kinetics of Static Softening in AA2024–T3 Aluminum Alloy. Met. Mater. Int. 28, 2042–2058 (2022). https://doi.org/10.1007/s12540-021-01126-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-021-01126-z

Keywords

Navigation