Skip to main content
Log in

Application of a linearly decreasing weight particle swarm to optimize the process conditions of al matrix nanocomposites

  • Published:
Metallurgist Aims and scope

An Erratum to this article was published on 16 November 2012

In this paper, SiC nanoparticles were added into the commercial casting Al–Si aluminum alloy to fabricate metal matrix nanocomposites (MMNCs) with uniform reinforcement distribution. Experimental results revealed that the presence of nano-SiC reinforcement led to significant improvement in hardness and UTS while the ductility of the aluminum matrix is retained. An integrated optimization approach using an artificial neural network and a modified particle swarm is proposed to solve a process parameter design problem in casting. The artificial neural network is used to obtain the relationships between decision variables and the performance measures of interest, while the particle swarm is used to perform the optimization with multiple objectives. The results showed that the particle swarm is an effective method for solving multi-objective optimization problems, and that an integrated approach using an artificial neural network and a modified particle swarm can be used to solve complex process parameter design problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. R. Kaboli and G. A. Irons, J. Mater. Sci. Eng., 15, 170–176 (2011).

    Google Scholar 

  2. M. O. Shabani and A. Mazahery, Appl. Math. Model., 35, 5707–5713 (2011).

    Article  Google Scholar 

  3. E. Gomes and G. S. Hanumanth, Int. J. Mater. Sci., 28, 2459–2465 (1993).

    Article  Google Scholar 

  4. M. Razavi M. R. Rahimipour, and A. H. Rajabi-Zamani, Mater. Sci. Eng. A, 454–455, 144–147 (2007).

    Google Scholar 

  5. A. Vencla, I. Bobicb, S. Arosteguic, B. Bobicd, A. Marinkovica, and M. Babice, J. Alloys Compd., 506, 631–639 (2010).

    Article  Google Scholar 

  6. M. O. Shabani and A. Mazahery, Metall. Mater. Trans. A, DOI:10.1007/s11661-011-1040-1

  7. B. Xionga, Z. Xu, Q. Yan, B. Lu, and C. Cai, J. Alloys Compd., 509,1187–1191 (2011).

    Article  Google Scholar 

  8. S. A. Sajjadi, H. R. Ezatpour, and M. Torabi Parizi, J. Mater. Des., 34, 106–111 (2011).

    Article  Google Scholar 

  9. Q. Nguyen and M. Gupta, J. Alloys Compd., 490, 382–387 (2010).

    Article  CAS  Google Scholar 

  10. S. F. Hassan and M. Gupta, Metall. Mater. Trans., 36A, 2253–2258 (2005).

    Article  CAS  Google Scholar 

  11. M. O. Shabani and A. Mazahery, Synth. Metal., 161, 1226–1231 (2011).

    Article  CAS  Google Scholar 

  12. H. Ferkel and B. L. Mordike, Mater. Sci. Eng. A, 298, 193–199 (2001).

    Article  Google Scholar 

  13. J. R. Groza, Int. J. Powder Metall., 35, 59–66 (1999).

    CAS  Google Scholar 

  14. K. Akio, O. Atsushi, K. Toshiro, and T. Hiroyuki, J. Jpn. Inst. Light Met., 49, 149–154 (1999).

    Article  Google Scholar 

  15. A. Mazahery and M. O. Shabani, J. Compos. Mater., 45, 2579–2586 (2011).

    Article  CAS  Google Scholar 

  16. M. Habibnejad-Korayema, R. Mahmudi, and W. J. Pooleb, Mater. Sci. Eng. A, 519, 198–203 (2009).

    Article  Google Scholar 

  17. S. Amirkhanlou and B. Niroumand, J. Mater. Des., 32, 1895–1902 (2011).

    Article  CAS  Google Scholar 

  18. M. A. Taha and N. A. El-Mahallawy, J. Mater. Process. Technol., 73, 139–146 (1998).

    Article  Google Scholar 

  19. M. Kok, J. Mater. Process. Technol., 161, 381–387 (2005).

    Article  CAS  Google Scholar 

  20. R. Asthana and P. K. Rohatgi, Z. Metallk., 83, No. 12, 887–892 (1992).

    CAS  Google Scholar 

  21. I. A. Ibrahim, F. A. Mohamed, and E. J. Lavernia, J. Mater. Sci., 26, 1137–1156 (1991).

    Article  CAS  Google Scholar 

  22. Y. T. Zhao, S. L. Zhang, and G. Chen, Compos. Sci. Technol., 68, 1463–1470 (2008).

    Article  CAS  Google Scholar 

  23. M. P. Gomez-Carracedo, M. Gestal, J. Dorado, and J. M. Andrade, Chemomet. Intell. Lab. Syst., 87, 173–184 (2007).

    Article  CAS  Google Scholar 

  24. J. Behnamian and M. Zandieh, Expert Syst. Appl., 38, 14490–14498 (2011).

    Article  Google Scholar 

  25. A. N. Sadigh, M. Mozafari, and B. Karimi, Adv. Eng. Software, 45, 144–152 (2012).

    Article  Google Scholar 

  26. A. Kaveh and S. Talatahari, Comput. Struct., 88, 1220–1229 (2010).

    Article  Google Scholar 

  27. S. Talatahari, B. Farahmand Azar, R. Sheikholeslami, and A. H. Gandomi, Commun. Nonlin. Sci. Numer. Simul., 17, 1312–1319 (2012).

    Article  Google Scholar 

  28. P. Davami and N. Varahram, Kovove Mater., 49, 253–258 (2011).

    Google Scholar 

  29. Chi-Yang Tsai and I-Wei Kao, Expert Syst. with Appl., 38, 6565–6576 (2011).

    Article  Google Scholar 

  30. Liang Zhao, Feng Qian, Yupu Yang, Yong Zeng, and Haijun Su, Appl. Soft Comput., 10, 938–944 (2010).

    Article  Google Scholar 

  31. P. Davami and M. Razavi, Int. J. Cast Met. Res., 25, 53–58 (2012).

    Article  Google Scholar 

  32. P. C. Pendharkar, Comput. Oper. Res., 32, 2561–2582 (2005).

    Article  Google Scholar 

  33. G. Celli, E. Ghiani, S. Mocci, and F. Pilo, IEEE Trans. Power Syst., 20, No. 2 750–757 (2005).

    Article  Google Scholar 

  34. A. Safari, R. Jahani, H. A. Shayanfar, and J. Olamaei, Int. J. Electr. Electron. Eng., 4, No. 8, 550–553 (2010).

    Google Scholar 

  35. H. Yoshida, K. Kawata, and Y. Fukuyama, IEEE Trans. Power Syst., 15, 1232–1239 (2000).

    Article  Google Scholar 

  36. S. Janson and M. Middendorf, IEEE Trans. Syst. Man Cybern. Part B, 35, 1272–1282 (2005).

    Article  Google Scholar 

  37. J. Kennedy and R. Mendes, Proceed. Congr. Evolutionary Comput. (2002), pp. 1671–1676.

  38. J. J. Liang, A. K. Qin, P. N. Suganthan, and S. Baskar, Proceed. IEEE Conf. Syst., Man Cybern. (2004), pp. 3659–3664.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. O. Shabani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shabani, M.O., Mazahery, A. Application of a linearly decreasing weight particle swarm to optimize the process conditions of al matrix nanocomposites. Metallurgist 56, 414–422 (2012). https://doi.org/10.1007/s11015-012-9591-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11015-012-9591-y

Keywords

Navigation