Skip to main content
Log in

Dynamics analysis of a nonlinear energy sink for passive suppression of a parametrically excited system

  • Research
  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

Nonlinear energy sinks (NESs) have been extensively studied to develop passive suppression strategies, with the primary objective of minimizing hazardous oscillatory responses in structures. In this work, we investigate the dynamical regimes of a parametrically excited one-degree-of-freedom system with a rotary NES (RNES) acting as a passive suppressor. By performing numerical pseudo-arclength continuations we determine the comprehensive local bifurcation scenario and illustrate, through locus maps, the impact of various RNES parameters. We identify configurations of the parametric excitation amplitude, mass, and absorber radius that result in stable vibration ranges. The dynamic scenario necessitates a precise adjustment of the RNES characteristics, tailored for either passive suppression or energy harvesting applications. Finally, we assess the resilience of the suitable vibration regions by examining the global dynamics. Basins of attraction display a fractal form, indicating a high sensitivity of the response to initial conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

The authors may provide the numerical codes after the analysis of requests.

Abbreviations

RNES:

Rotary nonlinear energy sink

BPC:

Branching point cycles

PD:

Period-doubling

LPC:

Limit-point cycles

NS:

Neimark–Sacker

M :

Mass of the main structure

D :

Characteristic length of the main structure cross-section

c :

Damping constant associated with the main structure

\(\bar{k}\) :

Time-average value of the main structure’s stiffness

\(\Delta k\) and \(\Omega\) :

Amplitude and frequency of the stiffness variation, respectively

Y :

Dimensional displacement of the main structure

\(\theta\) :

Angular position of the RNES

\(\omega _{n,y}=\sqrt{\frac{\bar{k}}{M+m}}\) :

Reference frequency

mr and \(c_\theta\) :

Mass, radius and damping of the RNES, respectively

\(y=Y/D\) :

Dimensionless displacement of the main structure

\(\hat{m}=\frac{m}{M}\) :

Dimensionless suppressor mass

\(\hat{r}=\frac{r}{D}\) :

Dimensionless suppressor radius

\(\zeta _y=\frac{c}{2(M+m)\omega _{n,y}}\) :

Damping ratio associated with the main structure

\(\zeta _\theta =\frac{c_\theta }{2mr^2 \omega _{n,y}}\) :

RNES damping ratio

\(\delta =\frac{\Delta k}{\bar{k}}\) :

Dimensionless parametric excitation amplitude

\(n=\frac{\Omega }{\omega _{n,y}}\) :

Dimensionless parametric excitation frequency

\(y_{max}\) :

Maximum displacement of the main structure obtained in the periodic orbit

References

  1. Vestroni F, Casini P (2020) Mitigation of structural vibrations by hysteretic oscillators in internal resonance. Nonlinear Dyn 99(1):505–518. https://doi.org/10.1007/s11071-019-05129-9

    Article  Google Scholar 

  2. Piccirillo V (2021) Suppression of chaos in nonlinear oscillators using a linear vibration absorber. Meccanica 56(2):255–273. https://doi.org/10.1007/s11012-020-01283-2

    Article  MathSciNet  Google Scholar 

  3. Gendelman OV, Manevitch LI, Vakakis AF, Closkey RM (2001) Energy pumping in nonlinear mechanical oscillators: part I-dynamics of the underlying Hamiltonian systems. J Appl Mech 68:34–41. https://doi.org/10.1115/1.1345524

    Article  MathSciNet  Google Scholar 

  4. Vakakis AF, Gendelman OV (2001) Energy pumping in nonlinear mechanical oscillators: part II-resonance capture. J Appl Mech 68:42–48. https://doi.org/10.1115/1.1345525

    Article  MathSciNet  Google Scholar 

  5. Lee YS, Vakakis AF, Bergman LA, McFarland DM, Kerschen G, Nucera F, Tsakirtzis S, Panagopoulos PN (2008) Passive non-linear targeted energy transfer and its applications to vibration absorption: a review. J Multi-body Dyn. https://doi.org/10.1243/14644193JMBD118

    Article  Google Scholar 

  6. Vakakis AF, Gendelman OV, Bergman LA, Mojahed A, Gzal M (2022) Nonlinear targeted energy transfer: state of the art and new perspectives. Nonlinear Dyn. https://doi.org/10.1007/s11071-022-07216-w

    Article  Google Scholar 

  7. Ding H, Chen LQ (2020) Designs, analysis, and applications of nonlinear energy sinks. Nonlinear Dyn. https://doi.org/10.1007/s11071-020-05724-1

    Article  Google Scholar 

  8. Saeed AS, Nasar RA, AL-Shudeifat MA (2022) A review on nonlinear energy sinks: designs, analysis and applications of impact and rotary types. Nonlinear Dyn. https://doi.org/10.1007/s11071-022-08094-y

    Article  Google Scholar 

  9. Dai HL, Abdelkefi A, Wang L (2016) Usefulness of passive non-linear energy sinks in controlling galloping vibrations. Int J Non-Linear Mech 81:83–94. https://doi.org/10.1016/j.ijnonlinmec.2016.01.007

    Article  Google Scholar 

  10. Teixeira B, Franzini GR, Gosselin FP (2018) Passive suppression of transverse galloping using a non-linear energy sink. In: Proceedings of 9th international symposium on fluid-structure interactions, flow-sound interactions, flow-induced vibration and noise

  11. Selwanis MM, Franzini GR, Béguin C, Gosselin FP (2021) Wind tunnel demonstration of galloping mitigation with a purely nonlinear energy sink. J Fluids Struct 100:103169. https://doi.org/10.1016/j.jfluidstructs.2020.103169

    Article  Google Scholar 

  12. Selwanis MM, Franzini GR, Béguin C, Gosselin FP (2022) Multi-ball rotative nonlinear energy sink for galloping mitigation. J Sound Vib. https://doi.org/10.1016/j.jsv.2022.116744

    Article  Google Scholar 

  13. Blanchard AB, Gendelman OV, Bergman LA, Vakakis AF (2016) Capture into a slow-invariant-manifold in the fluid-structure dynamics of a sprung cylinder with a nonlinear rotator. J Fluids Struct 63:155–173. https://doi.org/10.1016/j.jfluidstructs.2016.03.009

    Article  Google Scholar 

  14. Tumkur RKR, Pearlstein AJ, Masud A, Gendelman OV, Blanchard AB, Bergman LA, Vakakis AF (2017) Effect of an internal nonlinear rotational dissipative element on vortex shedding and vortex-induced vibration of a sprung circular cylinder. J Fluid Mech 828:196–235. https://doi.org/10.1017/jfm.2017.504

    Article  MathSciNet  Google Scholar 

  15. Blanchard A, Bergman LA, Vakakis A (2019) Vortex-induced vibration of a linearly sprung cylinder with an internal rotational nonlinear energy sink in turbulent flow. Nonlinear Dyn. https://doi.org/10.1007/s11071-019-04775-3

    Article  Google Scholar 

  16. Ueno T, Franzini GR (2019) Numerical studies on passive suppression of one and two degrees-of-freedom vortex-induced vibrations using a rotative non-linear vibration absorber. Int J Non-Linear Mech 116:230–249. https://doi.org/10.1016/j.ijnonlinmec.2019.07.001

    Article  Google Scholar 

  17. Chen D, Marzocca P, Xiao Q, Zhan Z, Gu C (2020) Vortex-induced vibration on a low mass ratio cylinder with a nonlinear dissipative oscillator at moderate Reynolds number. J Fluids Struct 99:103160. https://doi.org/10.1016/j.jfluidstructs.2020.103160

    Article  Google Scholar 

  18. Augusto J, Silva I, Marques FD (2021) Multi-degree of freedom nonlinear energy sinks for passive control of vortex-induced vibrations in a sprung cylinder. Acta Mechanica. https://doi.org/10.1007/s00707-021-03037-x

    Article  Google Scholar 

  19. Franzini GR (2021) An elastic rotative nonlinear vibration absorber (ERNVA) as a passive suppressor for vortex-induced vibrations. Nonlinear Dyn 103:255–277. https://doi.org/10.1007/s11071-020-06149-6

    Article  Google Scholar 

  20. Araujo GP, da Silva JAI, Marques FD (2022) Energy harvesting from a rotational nonlinear energy sink in vortex-induced vibrations. J Fluids Struct 113:103656. https://doi.org/10.1016/j.jfluidstructs.2022.103656

    Article  Google Scholar 

  21. Maciel VSF, Kheiri M, Franzini GR (2022) Passive suppression of flow-induced vibrations of a cantilevered pipe discharging fluid using non-linear vibration absorbers. Int J Non-Linear Mech. https://doi.org/10.1016/j.ijnonlinmec.2022.104053

    Article  Google Scholar 

  22. Luongo A, Zulli D (2014) Aeroelastic instability analysis of NES-controlled systems via a mixed multiple scale/harmonic balance method. J Vib Control 20(13):1985–1998. https://doi.org/10.1177/1077546313480542

    Article  Google Scholar 

  23. Pacheco DRQ, Marques FD, Ferreira AJM (2018) Panel flutter suppression with nonlinear energy sinks: numerical modeling and analysis. Int J Non-Linear Mech 106:108–114. https://doi.org/10.1016/j.ijnonlinmec.2018.08.009

    Article  Google Scholar 

  24. Eissa M, Kamel M, El-Sayed AT (2011) Vibration reduction of a nonlinear spring pendulum under multi external and parametric excitations via a longitudinal absorber. Meccanica 46(2):325–340. https://doi.org/10.1007/s11012-010-9311-2

    Article  MathSciNet  Google Scholar 

  25. Mathieu E (1873) Course de physique mathématique, Paris

  26. Mendes BAP, Ribeiro EAR, Mazzilli CEN (2020) Piezoelectric vibration controller in a parametrically-excited system with modal localisation. Meccanica 55(12):2555–2569. https://doi.org/10.1007/s11012-020-01195-1

    Article  MathSciNet  Google Scholar 

  27. Nayfeh AH, Mook DT (1979) Nonlinear oscillations. Wiley, New York

    Google Scholar 

  28. Meirovitch L (2003) Methods of analytical dynamics. Dover Publications, New York

    Google Scholar 

  29. Patel MH, Park HI (1991) Dynamics of tension leg platform tethers at low tension. Part I-Mathieu stability at large parameters. Mar Struct 4:257–273. https://doi.org/10.1016/0951-8339(91)90004-U

    Article  Google Scholar 

  30. Chatjigeorgiou IK, Mavrakos SA (2005) Nonlinear resonances of parametrically excited risers-numerical and analytic investigation for ω = 2ω1. Comput Struct 83:560–573. https://doi.org/10.1016/j.compstruc.2004.11.009

    Article  Google Scholar 

  31. Franzini GR, Mazzilli CEN (2016) Non-linear reduced-order model for parametric excitation analysis of an immersed vertical slender rod. Int J Non-Linear Mech 80:29–39. https://doi.org/10.1016/j.ijnonlinmec.2015.09.019

    Article  Google Scholar 

  32. Franzini GR, Santos CCP, Mazzilli CEN, Pesce CP (2016) Parametric excitation of an immersed, vertical and slender beam using reduced-order models: influence of hydrodynamic coefficients. Mar Syst Ocean Technol 11:10–18. https://doi.org/10.1007/s40868-016-0013-z

    Article  Google Scholar 

  33. Vernizzi GJ, Franzini GR, Lenci S (2019) Reduced-order models for the analysis of a vertical rod under parametric excitation. Int J Mech Sci 163:105122. https://doi.org/10.1016/j.ijmecsci.2019.105122

    Article  Google Scholar 

  34. Vernizzi GJ, Lenci S, Franzini GR (2020) A detailed study of the parametric excitation of a vertical heavy rod using the method of multiple scales. Meccanica. https://doi.org/10.1007/s11012-020-01247-6

    Article  MathSciNet  Google Scholar 

  35. Franzini GR, Pesce CP, Salles R, Gonçalves RT, Fujarra ALC, Mendes P (2015) Experimental analysis of a vertical and flexible cylinder in water: response to top motion excitation and parametric resonance. J Vib Acoust Trans ASME. https://doi.org/10.1115/1.4029265

    Article  Google Scholar 

  36. Shiroky IB, Gendelman OV (2008) Essentially nonlinear vibration absorber in a parametrically excited system. ZAMM Zeitschrift fur Angewandte Mathematik und Mechanik 88:573–596. https://doi.org/10.1002/zamm.200800009

    Article  MathSciNet  Google Scholar 

  37. Franzini GR, Campedelli GR, Mazzilli CEN (2018) A numerical investigation on passive suppression of the parametric instability phenomenon using a rotative non-linear vibration absorber. Int J Non-Linear Mech 105:249–260. https://doi.org/10.1016/j.ijnonlinmec.2018.05.014

    Article  Google Scholar 

  38. Gendelman OV, Sigalov G, Manevitch LI, Mane M, Vakakis AF, Bergman LA (2012) Dynamics of an eccentric rotational nonlinear energy sink. J Appl Mech 79:110121–110129. https://doi.org/10.1115/1.4005402

    Article  Google Scholar 

  39. Ding K, Pearlstein AJ (2021) Free response of a rotational nonlinear energy sink: Complete dissipation of initial energy for small initial rectilinear displacements. J Appl Mech 88:1–14. https://doi.org/10.1115/1.4048463

    Article  Google Scholar 

  40. Ding K, Pearlstein A (2021) Free response of a rotational nonlinear energy sink coupled to a linear oscillator: fractality, riddling, and initial-condition sensitivity at intermediate initial displacements. J Appl Mech 88:121009. https://doi.org/10.1115/1.4051998

    Article  Google Scholar 

  41. Kvittem MI, Bachynski EE, Moan T (2012) Effects of hydrodynamic modelling in fully coupled simulations of a semi-submersible wind turbine. Energy Proc 24:351–362

    Article  Google Scholar 

  42. Lenci S, Rega G (eds) (2018) Global nonlinear dynamics for engineering design and system safety - international centre for mechanical sciences (CISM): courses and lectures, 1st edn. Springer, New York, p 318. https://doi.org/10.1007/978-3-319-99710-0

    Book  Google Scholar 

  43. Andonovski N, Lenci S (2020) Six-dimensional basins of attraction computation on small clusters with semi-parallelized SCM method. Int J Dyn Control 8:436–447. https://doi.org/10.1007/s40435-019-00557-2

    Article  MathSciNet  Google Scholar 

  44. Rega G, Lenci S (2008) Dynamical integrity and control of nonlinear mechanical oscillators. J Vib Control 14:159–179. https://doi.org/10.1177/1077546307079403

    Article  Google Scholar 

  45. Belardinelli P, Lenci S, Rega G (2018) Seamless variation of isometric and anisometric dynamical integrity measures in Basins’s erosion. Commun Nonlinear Sci Numer Simul 56:499–507. https://doi.org/10.1016/j.cnsns.2017.08.030

    Article  MathSciNet  Google Scholar 

  46. Alexander NA, Schilder F (2009) Exploring the performance of a nonlinear tuned mass damper. J Sound Vib 319(1):445–462. https://doi.org/10.1016/j.jsv.2008.05.018

    Article  Google Scholar 

  47. Hartog JPD (1956) Mechanical vibrations. McGraw-Hill, New York

    Google Scholar 

  48. Hsu CS (1987) Cell-to-cell mapping—a method of global analysis for nonlinear systems. Springer, New York

    Book  Google Scholar 

  49. Belardinelli P, Lenci S (2017) Improving the global analysis of mechanical systems via parallel computation of basins of attraction. Proc IUTAM 22:192–199. https://doi.org/10.1016/j.piutam.2017.08.028

    Article  Google Scholar 

Download references

Acknowledgements

The first author acknowledges the São Paulo Research Foundation (FAPESP) for the financial support given during his period as a visiting research at Polytechnic University of Marche, grant 2019/15046-2 and the Brazilian Research Council (CNPq) for the grant 305945/2020-3. FAPESP is also acknowledged for sponsoring a Thematic Project that focuses on the study of nonlinear dynamics applied to engineering systems (grant 2022/00770-0).

Funding

This paper results from funding from the São Paulo Research Foundation (FAPESP), Grants 2019/15046-2 and 2022/00770-0. The Brazilian Research Council (CNPq) also supported the research (Grant 305945/2020-3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guilherme Rosa Franzini.

Ethics declarations

Ethical approval

Not applicable

Conflict of interest

We declare we have no Conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Additional three-dimensional basins of attraction

Appendix: Additional three-dimensional basins of attraction

Figure 13 shows 3D sections of the 4D basins of attraction on the space \(y(0)\times \dot{y}(0) \times \theta (0)\) for different values of initial angular velocities, namely \(\dot{\theta }(0)\) = \(-0.07\), 0.07, 0.35 and 0.5.

Fig. 13
figure 13

3D sections of the calculated 4D basins. In the caption the section position in the space \(y(0)\times \dot{y}(0) \times \theta (0) \times \dot{\theta }(0)\)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Franzini, G.R., Belardinelli, P. & Lenci, S. Dynamics analysis of a nonlinear energy sink for passive suppression of a parametrically excited system. Meccanica 59, 703–715 (2024). https://doi.org/10.1007/s11012-024-01812-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-024-01812-3

Keywords

Navigation