Skip to main content
Log in

Utilisation of a wrinkled film-based structure for the sensing measurement of a vibro-impact capsule robot

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

According to a pre-strain strategy, a wrinkled structure for measuring the contact pressure between the intestinal wall and the vibro-impact capsule robot is proposed for the potential application of early bowel cancer detection. An analytical model of this wrinkled structure is established by using an energy method. Based on Hertz theory, a theoretical expression for the elastic modulus of bowel tissue and the amplitude of this structure, so the current generated, is obtained. It is found that the sensitivity of the structure is dependent on its wrinkled amplitude. Our simulation results show that, for a static capsule, the greater the contact pressure between the wrinkled structure and the capsule is, the greater the current of this mechanism is generated, indicating the bowel tissue becomes stiffer. For a dynamic capsule, our simulation results reveal that the faster the average velocity of the capsule is, the greater the current is generated. These relationships are explained by modelling the hoop pressure of the intestine on the capsule robot validated via finite element analysis. The findings of this paper can provide design guidelines for fabricating the proposed mechanism integrated onto the vibro-impact capsule robot for diagnostic and locomotion tracking purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The numerical data sets generated and analysed during the present study are available from the corresponding author on reasonable request.

References

  1. Dupont PE, Nelson BJ, Goldfarb M, Hannaford B, Menciassi A, O’Malley MK, Simaan N, Valdastri P, Yang GZ (2021) A decade retrospective of medical robotics research from 2010 to 2020. Sci Robot 6(60):eabi8017

    Google Scholar 

  2. Slawinski PR, Obstein KL, Valdastri P (2015) Capsule endoscopy of the future: what’s on the horizon? World J Gastroenterol WJG 21(37):10528

    Google Scholar 

  3. Singeap A-M, Stanciu C, Trifan A (2016) Capsule endoscopy: the road ahead. World J Gastroenterol 22(1):369

    Google Scholar 

  4. Sahafi A, Wang Y, Rasmussen C, Bollen P, Baatrup G, Blanes-Vidal V, Herp J, Nadimi E (2022) Edge artificial intelligence wireless video capsule endoscopy. Sci Rep 12(1):1–10

    Google Scholar 

  5. Ciuti G, Caliò R, Camboni D, Neri L, Bianchi F, Arezzo A, Koulaouzidis A, Schostek S, Stoyanov D, Oddo C et al (2016) Frontiers of robotic endoscopic capsules: a review. J Micro-Bio Robot 11(1):1–18

    Google Scholar 

  6. Mahmood S, Schostek S, Schurr MO, Bergsland J, Balasingham I, Fosse E (2022) Robot-assisted magnetic capsule endoscopy; navigating colorectal inclinations. Minim Invasive Therapy Allied Technol 31(6):930–938

    Google Scholar 

  7. Schiffman JD, Fisher PG, Gibbs P (2015) Early detection of cancer: past, present, and future. Am Soc Clin Oncol Edu Book 35(1):57–65

    Google Scholar 

  8. Crosby D, Lyons N, Greenwood E, Harrison S, Hiom S, Moffat J, Quallo T, Samuel E, Walker I (2020) A roadmap for the early detection and diagnosis of cancer. Lancet Oncol 21(11):1397–1399

    Google Scholar 

  9. Gerson LB, Fidler JL, Cave DR, Leighton JA (2015) ACG clinical guideline: diagnosis and management of small bowel bleeding. Off J Am College Gastroenterol ACG 110(9):1265–1287

    Google Scholar 

  10. Liu Y, Tian J, Manfredi L, Terry BS, Prasad S, Rahman I, Marlicz W, Koulaouzidis A (2022) A survey of small bowel modelling and its applications for capsule endoscopy. Mechatronics 83:102748

    Google Scholar 

  11. Sinnott MD, Cleary PW, Harrison SM (2017) Peristaltic transport of a particulate suspension in the small intestine. Appl Math Modell 44:143–159

    MATH  Google Scholar 

  12. Valdastri P, Simi M, Webster RJ III (2012) Advanced technologies for gastrointestinal endoscopy. Ann Rev Biomed Eng 14:397–429

    Google Scholar 

  13. Barducci L, Norton JC, Sarker S, Mohammed S, Jones R, Valdastri P, Terry BS (2020) Fundamentals of the gut for capsule engineers. Progress Biomed Eng 2(4):042002

    Google Scholar 

  14. Ciuti G, Menciassi A, Dario P (2011) Capsule endoscopy: from current achievements to open challenges. IEEE Rev Biomed Eng 4:59–72

    Google Scholar 

  15. Le VH, Hernando L-R, Lee C, Choi H, Jin Z, Nguyen KT, Go G, Ko S-Y, Park J-O, Park S (2015) Shape memory alloy-based biopsy device for active locomotive intestinal capsule endoscope. Proc Inst Mech Eng Part H J Eng Med 229(3):255–263

    Google Scholar 

  16. Hanscom M, Cave DR (2022) Endoscopic capsule robot-based diagnosis, navigation and localization in the gastrointestinal tract. Front Robot AI 9:896028

    Google Scholar 

  17. Kwack WG, Lim YJ (2016) Current status and research into overcoming limitations of capsule endoscopy. Clin Endosc 49(1):8–15

    Google Scholar 

  18. Charoen A, Guo A, Fangsaard P, Taweechainaruemitr S, Wiwatwattana N, Charoenpong T, Rich HG (2022) Rhode island gastroenterology video capsule endoscopy data set. Sci Data 9(1):1–6

    Google Scholar 

  19. Alazemi AJ, Iqbal A (2022) A compact and wideband MIMO antenna for high-data-rate biomedical ingestible capsules. Sci Rep 12(1):1–13

    Google Scholar 

  20. Zhou H, Alici G (2019) A novel magnetic anchoring system for wireless capsule endoscopes operating within the gastrointestinal tract. IEEE/ASME Trans Mechatron 24(3):1106–1116

    Google Scholar 

  21. Kim HM, Yang S, Kim J, Park S, Cho JH, Park JY, Kim TS, Yoon E-S, Song SY, Bang S (2010) Active locomotion of a paddling-based capsule endoscope in an in vitro and in vivo experiment (with videos). Gastrointest Endosc 72(2):381–387

    Google Scholar 

  22. Sun Z-J, Ye B, Qiu Y, Cheng X-G, Zhang H-H, Liu S (2014) Preliminary study of a legged capsule robot actuated wirelessly by magnetic torque. IEEE Trans Magn 50(8):1–6

    Google Scholar 

  23. Gao J, Yan G (2015) Locomotion analysis of an inchworm-like capsule robot in the intestinal tract. IEEE Trans Biomed Eng 63(2):300–310

    Google Scholar 

  24. Zhang H, Yan Y, Gu Z, Wang Y, Sun T (2016) Friction enhancement between microscopically patterned polydimethylsiloxane and rabbit small intestinal tract based on different lubrication mechanisms. ACS Biomater Sci Eng 2(6):900–907

    Google Scholar 

  25. Dickson I (2018) Gas-sensing gut capsules. Nature Rev Gastroenterol Hepatol 15(3):131

    Google Scholar 

  26. Srinivasan SS, Alshareef A, Hwang AV, Kang Z, Kuosmanen J, Ishida K, Jenkins J, Liu S, Madani WAM, Lennerz J et al (2022) Robocap: Robotic mucus-clearing capsule for enhanced drug delivery in the gastrointestinal tract. Sci Robot 7(70):eabp9066

    Google Scholar 

  27. Nguyen KT, Hoang MC, Choi E, Kang B, Park J-O, Kim C-S (2020) Medical microrobot-A drug delivery capsule endoscope with active locomotion and drug release mechanism: proof of concept. Int J Control Autom Syst 18(1):65–75

    Google Scholar 

  28. Ye D, Xue J, Yuan S, Zhang F, Song S, Wang J, Meng MQ-H (2022) Design and control of a magnetically-actuated capsule robot with biopsy function. IEEE Trans Biomed Eng 69(9):2905–2915

    Google Scholar 

  29. Guo B, Liu Y, Prasad S (2019) Modelling of capsule-intestine contact for a self-propelled capsule robot via experimental and numerical investigation. Nonlinear Dyn 98(4):3155–3167

    Google Scholar 

  30. Kawano S, Kojima M, Higuchi Y, Sugimoto M, Ikeda K, Sakuyama N, Takahashi S, Hayashi R, Ochiai A, Saito N (2015) Assessment of elasticity of colorectal cancer tissue, clinical utility, pathological and phenotypical relevance. Cancer Sci 106(9):1232–1239

    Google Scholar 

  31. Chen L-D, Wang W, Xu J-B, Chen J-H, Zhang X-H, Wu H, Ye J-N, Liu J-Y, Nie Z-Q, Lu M-D et al (2017) Assessment of rectal tumors with shear-wave elastography before surgery: comparison with endorectal us. Radiology 285(1):279–292

    Google Scholar 

  32. Cortegoso Valdivia P, Robertson AR, De Boer NK, Marlicz W, Koulaouzidis A (2021) An overview of robotic capsules for drug delivery to the gastrointestinal tract. J Clin Med 10(24):5791

    Google Scholar 

  33. Liu L, Towfighian S, Hila A (2015) A review of locomotion systems for capsule endoscopy. IEEE Rev Biomed Eng 8:138–151

    Google Scholar 

  34. Kim J-S, Sung I-H, Kim Y-T, Kwon E-Y, Kim D-E, Jang Y (2006) Experimental investigation of frictional and viscoelastic properties of intestine for microendoscope application. Tribol Lett 22(2):143–149

    Google Scholar 

  35. Kim J, Sung I, Kim Y, Kim D, Jang Y (2007) Analytical model development for the prediction of the frictional resistance of a capsule endoscope inside an intestine. Proc Inst Mech Eng Part H J Eng Med 221(8):837–845

    Google Scholar 

  36. Zhou H, Alici G, Than TD, Li W (2012) Modeling and experimental investigation of rotational resistance of a spiral-type robotic capsule inside a real intestine. IEEE/ASME Trans Mechatron 18(5):1555–1562

    Google Scholar 

  37. Zhang C, Liu H, Tan R, Li H (2012) Modeling of velocity-dependent frictional resistance of a capsule robot inside an intestine. Tribol Lett 47(2):295–301

    Google Scholar 

  38. Guo B, Ley E, Tian J, Zhang J, Liu Y, Prasad S (2020) Experimental and numerical studies of intestinal frictions for propulsive force optimisation of a vibro-impact capsule system. Nonlinear Dyn 101(1):65–83

    Google Scholar 

  39. Tian J, Liu Y, Chen J, Guo B, Prasad S (2021) Finite element analysis of a self-propelled capsule robot moving in the small intestine. Int J Mech Sci 206:106621

    Google Scholar 

  40. Slawinski PR, Oleynikov D, Terry BS (2015) Intestinal biomechanics simulator for robotic capsule endoscope validation. J Med Eng Technol 39(1):54–59

    Google Scholar 

  41. Woo SH, Kim TW, Mohy-Ud-Din Z, Park IY, Cho J-H (2011) Small intestinal model for electrically propelled capsule endoscopy. Biomed Eng Online 10(1):1–20

    Google Scholar 

  42. Li P, Kothari V, Terry BS (2015) Design and preliminary experimental investigation of a capsule for measuring the small intestine contraction pressure. IEEE Trans Biomed Eng 62(11):2702–2708

    Google Scholar 

  43. Li P, Kreikemeier-Bower C, Xie W, Kothari V, Terry BS (2017) Design of a wireless medical capsule for measuring the contact pressure between a capsule and the small intestine. J Biomech Eng 139(5):051003

    Google Scholar 

  44. Camboni D, Massari L, Chiurazzi M, Caliò R, Alcaide JO, D’Abbraccio J, Mazomenos E, Stoyanov D, Menciassi A, Carrozza MC, Dario P, Oddo CM, Ciuti G (2021) Endoscopic tactile capsule for non-polypoid colorectal Tumour detection. IEEE Trans Med Robot Bionics 3(1):64–73

    Google Scholar 

  45. Choong C-L, Shim M-B, Lee B-S, Jeon S, Ko D-S, Kang T-H, Bae J, Lee SH, Byun K-E, Im J et al (2014) Highly stretchable resistive pressure sensors using a conductive elastomeric composite on a micropyramid array. Adv Mater 26(21):3451–3458

    Google Scholar 

  46. Cai Y-W, Zhang X-N, Wang G-G, Li G-Z, Zhao D-Q, Sun N, Li F, Zhang H-Y, Han J-C, Yang Y (2021) A flexible ultra-sensitive triboelectric tactile sensor of wrinkled PDMS/MXene composite films for E-skin. Nano Energy 81:105663

    Google Scholar 

  47. Khang D-Y, Jiang H, Huang Y, Rogers JA (2006) A stretchable form of single-crystal silicon for high-performance electronics on rubber substrates. Science 311(5758):208–212

    Google Scholar 

  48. Bi H, Wang B, Su C, Zhang B, Ouyang H, Huang Y, Deng Z (2021) Buckling Behaviour of a stiff thin film on a finite-thickness bi-layer substrate. Int J Solids Struct 219:177–187

    Google Scholar 

  49. Bi H, Wang B, Ouyang H, Deng Z, Zhang B (2021) Nonlinear dynamic instability of wrinkled film-substrate structure under axial load. Nonlinear Dyn 106(4):2807–2827

    Google Scholar 

  50. Liu Y, Páez Chávez J (2017) Controlling multistability in a vibro-impact capsule system. Nonlinear Dyn 88(2):1289–1304

    Google Scholar 

  51. Páez Chávez J, Liu Y, Pavlovskaia E, Wiercigroch M (2016) Path-following analysis of the dynamical response of a piecewise-linear capsule system. Commun Nonlinear Sci Numer Simul 37:102–114

    MathSciNet  MATH  Google Scholar 

  52. Su M, Xu W, Zhang Y, Yang G (2021) Response of a vibro-impact energy harvesting system with bilateral rigid stoppers under gaussian white noise. Appl Math Modell 89:991–1003

    MathSciNet  MATH  Google Scholar 

  53. Liu Y, Pavlovskaia E, Hendry D, Wiercigroch M (2013) Vibro-impact responses of capsule system with various friction models. Int J Mech Sci 72:39–54

    Google Scholar 

  54. Gu X, Deng Z (2018) Dynamical analysis of vibro-impact capsule system with Hertzian contact model and random perturbation excitations. Nonlinear Dyn 92(4):1781–1789

    Google Scholar 

  55. Van CN, Ho K-T, La N-T, Ngo Q-H, Nguyen K-T, Hoang T-D, Chu N-H, Nguyen V-D et al (2022) Dynamic response of vibro-impact capsule moving on the inclined track and stochastic slope. Meccanica 58(2–3):421–439

    MathSciNet  MATH  Google Scholar 

  56. Ma Y, Xue Y, Jang K-I, Feng X, Rogers JA, Huang Y (2016) Wrinkling of a stiff thin film bonded to a pre-strained, compliant substrate with finite thickness. Proc R Soc A Math Phys Eng Sci 472(2192):20160339

    Google Scholar 

  57. Huang Z, Hong W, Suo Z (2005) Nonlinear analyses of wrinkles in a film bonded to a compliant substrate. J Mech Phys Solids 53(9):2101–2118

    MathSciNet  MATH  Google Scholar 

  58. Wang B, Zhang B, Bi H, Ouyang H, Huang Y, Wang S (2022) Theoretical predictions and evolutions of wrinkles in the film-intermediate layer-substrate structure under compression. Int J Solids Struct 250:111699

    Google Scholar 

  59. Chen L, Lee H, Guo Z, McGruer NE, Gilbert K, Mall S, Leedy KD, Adams GG (2007) Contact resistance study of noble metals and alloy films using a scanning probe microscope test station. J Appl Phys 102(7):074910

    Google Scholar 

  60. Kwon H, Jang S-S, Park Y-H, Kim T-S, Kim Y-D, Nam H-J, Joo Y-C (2008) Investigation of the electrical contact behaviors in au-to-au thin-film contacts for RF mems switches. J Micromech Microeng 18(10):105010

    Google Scholar 

  61. Fan Z, Cong Y, Zhang Z, Li R, Wang S, Yan K (2019) Shear wave elastography in rectal cancer staging, compared with endorectal ultrasonography and magnetic resonance imaging. Ultrasound Med Biol 45(7):1586–1593

    Google Scholar 

  62. Yan Y, Liu Y, Manfredi L, Prasad S (2019) Modelling of a vibro-impact self-propelled capsule in the small intestine. Nonlinear Dyn 96(1):123–144

    Google Scholar 

  63. Zhang J, Liu Y, Zhu D, Prasad S, Liu C (2022) Simulation and experimental studies of a vibro-impact capsule system driven by an external magnetic field. Nonlinear Dyn 109(3):1501–1516

    Google Scholar 

  64. Liu Y, Páez Chávez J, Guo B, Birler R (2020) Bifurcation analysis of a vibro-impact experimental rig with two-sided constraint. Meccanica 55(12):2505–2521

    MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support from the National Natural Science Foundation of China (No. 12172282), the State Key Laboratory of Mechanics and Control of Mechanical Structures (Nanjing University of Aeronautics and Astronautics, MCMS-E-0221K01), and the State Key Laboratory of Intelligent Manufacturing Equipment and Technology (Huazhong University of Science and Technology, IMETKF2023007). Mr Jiyuan Tian would like to acknowledge the financial support from China Scholarship Council for his CSC-Exeter PhD scholarship (award no. 201908060172). The first author, Dr Haohao Bi, would like to thank the support from the China Scholarship Council (CSC) which sponsors his visit to the University of Exeter where this work was conducted.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bo Wang or Yang Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest concerning the publication of this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

When the magnetic inner mass is excited by an external magnetic field, the capsule moves in the intestine, and its motion can be modelled via the following equations,

$$\begin{aligned} \begin{aligned} M_{\textrm{m}}{\ddot{Z}}_{\textrm{m}} = F_{\textrm{e}} - F_{\textrm{i}},\\ M_{\textrm{c}}{\ddot{Z}}_{\textrm{c}} = F_{\textrm{f}} + F_{\textrm{i}}, \end{aligned} \end{aligned}$$
(A.1)

where \(F_{\textrm{e}}= P_{\textrm{d}}\cos (\omega t)\) is the excitation, \(F_{\textrm{f}}\) denotes environmental resistance. According to the contact case between the magnet and the capsule, the mutual interactive force \(F_{\textrm{i}}\) can be written as

$$\begin{aligned} F_{\textrm{i}} = {\left\{ \begin{array}{ll} k (Z_{\textrm{m}} - Z_{\textrm{c}}) + c (V_{\textrm{m}} - V_{\textrm{c}}), &\quad \text {if } Z_{\textrm{m}} - Z_{\textrm{c}} < G_1,\\ k (Z_{\textrm{m}} - Z_{\textrm{c}}) + c (V_{\textrm{m}} - V_{\textrm{c}}) + k_1 (Z_{\textrm{m}} - Z_{\textrm{c}} - G_1), &\quad \text {if } Z_{\textrm{m}} - Z_{\textrm{c}} \ge G_1,\\ \end{array}\right. } \end{aligned}$$
(A.2)

where \(Z_{\textrm{m}}\) and \(V_{\textrm{m}}\) are the displacement and velocity of the magnet, \(Z_{\textrm{c}}\) and \(V_{\textrm{c}}\) are the displacement and velocity of the capsule, and \(G_1 = 1.6~{\textrm{mm}}\) is a gap between the magnet and the constraint. Because the friction models have no significant effect on the dynamics of the capsule, the frictional resistance acting on the capsule \(F_{\textrm{f}}\) is modelled as the Coulomb friction and is expressed as

$$\begin{aligned} {\left\{ \begin{array}{ll} F_{\textrm{f}} \in [-P_{\textrm{f}}, P_{\textrm{f}}], &\quad \text {if } V_{\textrm{c}} = 0,\\ F_{\textrm{f}} = -{{\,\textrm{sign}\,}}(V_{\textrm{c}}) P_{\textrm{f}} &\quad\text {if } V_{\textrm{c}} \ne 0,\\ \end{array}\right. } \end{aligned}$$
(A.3)

where \(P_{\textrm{f}} = 2.5~{\textrm{N}}\) denotes the static friction and is identified by experiment [38].

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bi, H., Tian, J., Zhang, B. et al. Utilisation of a wrinkled film-based structure for the sensing measurement of a vibro-impact capsule robot. Meccanica 58, 2151–2164 (2023). https://doi.org/10.1007/s11012-023-01712-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-023-01712-y

Keywords

Navigation