Skip to main content
Log in

Modelling architected plate using a non-local derivative-free shear deformable plate theory

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

The internal length scale relating to the cell size plays a crucial role in predicting the response of architected structures when subjected to external stimuli. A Volterra derivative-based approach for arriving at the non-local derivative-free continuum laws for architected structures is proposed. A mainstay of the work is the derivative-free directionality term, which recovers its classical counterpart in the infinitesimal limit. Using this approach, we derive the non-local integro-differential governing equations of a shear deformable plate. We also suggest a physical basis for the consideration of energy for nonaffine deformations and accurately estimate it by performing buckling analysis. This discards the requirement of the additional energy to be incorporated in an arbitrary manner for suppressing the unwanted spurious oscillations induced from zero energy modes. The numerical results demonstrate the efficacy of the proposed framework in precisely capturing the mechanical response of web-core shear deformable plate, thereby, manifesting the supremacy of the reduced model in shrinking the cost and computational time. To bolster our claim, various numerical models with different loading conditions have been analysed and compared against the three-dimensional FEM results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Data availability

The authors will make the data available on reasonable request.

References

  1. Maleki-Bigdeli MA, Sheikhi S, Baghani M (2021) Development of an analytical framework for viscoelastic corrugated-core sandwich plates and validation against fem. Meccanica 56:2103–2120

    Article  MathSciNet  MATH  Google Scholar 

  2. Wollmann L, Nayak AK, Parkin SSP, Felser C (2017) Heusler 4.0: tunable materials. Annu Rev Mater Res 47(1):247–270

    Article  Google Scholar 

  3. Vigliotti A, Pasini D (2012) Stiffness and strength of tridimensional periodic lattices. Comput Methods Appl Mech Eng 229:27–43

    Article  Google Scholar 

  4. Fleck N, Deshpande V, Ashby M (2010) Micro-architectured materials: past, present and future. Proc R Soc Lond Math Phys Eng Sci 466:2495–2516

    Google Scholar 

  5. Kolsters H, Zenkert D (2010) Buckling of laser-welded sandwich panels: ultimate strength and experiments. Proc Inst Mech Eng Part M J Eng Marit Environ 224(1):29–45

    Google Scholar 

  6. Jelovica J, Romanoff J, Ehlers S, Aromaa J (2013) Ultimate strength of corroded web-core sandwich beams. Mar Struct 31:1–14

    Article  Google Scholar 

  7. Jiang XX, Zhu L, Qiao JS, Wu YX, Li ZG, Chen JH (2014) The strength of laser welded web-core steel sandwich plates. In: Applied mechanics and materials vol 551, Trans Tech Publ, pp 42–46

  8. Bright S, Smith J (2007) A new design for steel bridge decks using laser fabrication. Struct Eng 85(21):49–57

    Google Scholar 

  9. Nilsson P, Al-Emrani M, Atashipour SR (2017) Transverse shear stiffness of corrugated core steel sandwich panels with dual weld lines. Thin-walled Struct 117:98–112

    Article  Google Scholar 

  10. Briscoe CR, Mantell SC, Davidson JH, Okazaki T (2011) Design procedure for web core sandwich panels for residential roofs. J Sandw Struct Mater 13(1):23–58

    Article  Google Scholar 

  11. Bapanapalli S, Martinez O, Gogu C, Sankar B, Haftka R, Blosser M (2006) Analysis and design of corrugated-core sandwich panels for thermal protection systems of space vehicles. In: 47th AIAA/ASME/ASCE/AHS/ASC structures, structural dynamics, and materials conference 14th AIAA/ASME/ahs adaptive structures conference 7th, p 1942

  12. Bright S, Smith J (2004) Fatigue performance of laser-welded steel bridge decks. Struct Eng 82(21):31

    Google Scholar 

  13. Sharma A, Sankar B, Haftka R (2010) Homogenization of plates with microstructure and application to corrugated core sandwich panels. In: 51st AIAA/ASME/ASCE/AHS/ASC structures, structural dynamics, and materials conference 18th AIAA/ASME/AHS adaptive structures conference 12th, p 2706

  14. Reddy J (2007) Nonlocal theories for bending, buckling and vibration of beams. Int J Eng Sci 45(2–8):288–307

    Article  MATH  Google Scholar 

  15. Lim CW, Zhang G, Reddy JN (2015) A higher-order nonlocal elasticity and strain gradient theory and its applications in wave propagation. J Mech Phys Solids 78:298–313

    Article  MathSciNet  MATH  Google Scholar 

  16. Cosserat E, Cosserat F (1909) Theories des corps deformables, A. Hermann et fils

  17. Eringen AC, Wegner J (2003) Nonlocal continuum field theories. Appl Mech Rev 56(2):B20–B22

    Article  Google Scholar 

  18. Yang F, Chong A, Lam DCC, Tong P (2002) Couple stress based strain gradient theory for elasticity. Int J Solids Struct 39(10):2731–2743

    Article  MATH  Google Scholar 

  19. Akgöz B, Civalek Ö (2013) Modeling and analysis of micro-sized plates resting on elastic medium using the modified couple stress theory. Meccanica 48:863–873

    Article  MathSciNet  MATH  Google Scholar 

  20. Ma H, Gao XL, Reddy JN (2008) A microstructure-dependent Timoshenko beam model based on a modified couple stress theory. J Mech Phys Solids 56(12):3379–3391

    Article  MathSciNet  MATH  Google Scholar 

  21. Reddy JN (2011) Microstructure-dependent couple stress theories of functionally graded beams. J Mech Phys Solids 59(11):2382–2399

    Article  MathSciNet  MATH  Google Scholar 

  22. Romano G, Diaco M (2021) On formulation of nonlocal elasticity problems. Meccanica 56(6):1303–1328

    Article  MathSciNet  MATH  Google Scholar 

  23. Demir C, Civalek Ö (2017) On the analysis of microbeams. Int J Eng Sci 121:14–33

    Article  MathSciNet  MATH  Google Scholar 

  24. Akgöz B, Civalek Ö (2022) Buckling analysis of functionally graded tapered microbeams via Rayleigh-Ritz method. Mathematics 10(23):4429

    Article  Google Scholar 

  25. Jalaei M, Thai H, Civalek Ö (2022) On viscoelastic transient response of magnetically imperfect functionally graded nanobeams. Int J Eng Sci 172:103629

    Article  MathSciNet  MATH  Google Scholar 

  26. Aghababaei R, Reddy JN (2009) Nonlocal third-order shear deformation plate theory with application to bending and vibration of plates. J Sound Vib 326(1–2):277–289

    Article  Google Scholar 

  27. Lu P, Zhang P, Lee H, Wang C, Reddy JN (2007) Non-local elastic plate theories. Proc R Soc Math Phys Eng Sci 463(2088):3225–3240

    MathSciNet  MATH  Google Scholar 

  28. Srividhya S, Raghu P, Rajagopal A, Reddy JN (2018) Nonlocal nonlinear analysis of functionally graded plates using third-order shear deformation theory. Int J Eng Sci 125:1–22

    Article  MathSciNet  MATH  Google Scholar 

  29. Romanoff J, Reddy JN, Jelovica J (2016) Using non-local Timoshenko beam theories for prediction of micro-and macro-structural responses. Compos Struct 156:410–420

    Article  Google Scholar 

  30. Karttunen AT, Reddy JN, Romanoff J (2018) Micropolar modeling approach for periodic sandwich beams. Compos Struct 185:656–664

    Article  Google Scholar 

  31. Karttunen AT, Reddy JN, Romanoff J (2019) Two-scale micropolar plate model for web-core sandwich panels. Int J Solids Struct 170:82–94

    Article  Google Scholar 

  32. Faghidian SA, Ghavanloo E (2021) Unified higher-order theory of two-phase nonlocal gradient elasticity. Meccanica 56(3):607–627

    Article  MathSciNet  MATH  Google Scholar 

  33. Saxena M, Sarkar S, Roy D (2022) A microstructure-sensitive and derivative-free continuum model for composite materials: applications to concrete. Int J Solids Struct 262:112051

    Google Scholar 

  34. Sarkar S, Roy D, Vasu RM (2015) A global optimization paradigm based on change of measures. R Soc Open Sci 2(7):150123

    Article  MathSciNet  Google Scholar 

  35. Sarkar S, Chowdhury S, Venugopal M, Vasu R, Roy D (2014) A Kushner–Stratonovich Monte Carlo filter applied to nonlinear dynamical system identification. Phys D 270:46–5904

    Article  MathSciNet  MATH  Google Scholar 

  36. Nowruzpour M, Sarkar S, Reddy JN, Roy D (2019) A derivative-free upscaled theory for analysis of defects. J Mech Phys Solids 122:489–501

    Article  MathSciNet  Google Scholar 

  37. Nwoji C, Onah H, Mama B, Ike C (2017) Theory of elasticity formulation of the Mindlin plate equations. Int J Eng Technol (IJET) 9(6):4344–4352

    Article  Google Scholar 

  38. Srinivasa AR, Reddy JN (2017) An overview of theories of continuum mechanics with nonlocal elastic response and a general framework for conservative and dissipative systems. Appl Mech Rev 10(1115/1):4036723

    Google Scholar 

  39. Reddy JN (2006) Theory and analysis of elastic plates and shells, 2nd edn. CRC Press, Boca Raton

    Book  Google Scholar 

  40. Hosseini-Hashemi S, Khorshidi K, Amabili M (2008) Exact solution for linear buckling of rectangular Mindlin plates. J Sound Vib 315(1–2):318–342

    Article  Google Scholar 

  41. Reddy JN (2003) Mechanics of laminated composite plates and shells: theory and analysis, 2nd edn. CRC Press, Boca Raton

    Book  Google Scholar 

  42. Bishop G, Welch G (2001) An introduction to the kalman filter. Proc of SIGGRAPH, Course 8(27599–23175), 41

  43. Kallianpur G (2013) Stochastic filtering theory, vol 13. Springer Science & Business Media, New York

    MATH  Google Scholar 

  44. Yang Z, Naumenko K, Ma C-C, Altenbach H, Oterkus E, Oterkus S (2022) Some closed form series solutions to peridynamic plate equations. Mech Res Commun 126:104000

    Article  Google Scholar 

  45. Yang Z, Naumenko K, Altenbach H, Ma C-C, Oterkus E, Oterkus S (2022) Some analytical solutions to peridynamic beam equations. ZAMM J Appl Math Mech/Z f ür Angew Math Mech 102(10):e202200132

    Article  MathSciNet  Google Scholar 

  46. Yang Z, Naumenko K, Altenbach H, Ma C-C, Oterkus E, Oterkus S (2022) Beam buckling analysis in peridynamic framework. Arch Appl Mech 92(12):3503–3514

    Article  Google Scholar 

  47. Silling SA, Epton M, Weckner O, Xu J, Askari E (2007) Peridynamic states and constitutive modeling. J Elast 88(2):151–184

    Article  MathSciNet  MATH  Google Scholar 

  48. Chen H (2018) Bond-associated deformation gradients for peridynamic correspondence model. Mech Res Commun 90:34–41

    Article  Google Scholar 

  49. Madenci E, Dorduncu M, Gu X (2019) Peridynamic least squares minimization. Comput Methods Appl Mech Eng 348:846–874

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors acknowledge Professor Arun Srinivasa (Department of Mechanical Engineering, Texas A& M University, College Station, TX 77845, Unites States) for sharing his valuable comments and suggestions, which greatly improved the quality of the results included here.

Funding

MS and SS acknowledge SERB (ECR/2018/001672) for supporting this work. JNR acknowledges the National Science Foundation (CMMI grant No. 1952873) for supporting this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saikat Sarkar.

Ethics declarations

Competing interests

The authors declare that there are no competing interests with publication of this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1: Localization of derivative-free deformation gradient G

The proposed derivative-free directionality term approaches its classical deformation gradient counterpart in the infinitesimal limit. For demonstration, let us assume sufficient smoothness of the field such that the displacement (\({u_3}\)) at a material point \(\varvec{Y}\), in the neighbourhood of \(\varvec{X}\), can be approximated using a truncated Taylor expansion as:

$$\begin{aligned} \begin{aligned} {(u_3)_Y\approx (u_3)_X+\triangledown (u_3,X_d)(Y_d-X_d)}, \end{aligned} \end{aligned}$$
(34)

where \({\triangledown }\) is the classical gradient operator. The average stretch around \(\varvec{X}\) may also be approximated in a similar way.

$$\begin{aligned} \begin{aligned} {(\bar{u}_3)_Y \approx (u_3)_X+\triangledown (u_3,X_d)(\overline{Y_d-X_d})}. \end{aligned} \end{aligned}$$
(35)

The nonlocal derivative-free deformation gradient is expressed as:

$$\begin{aligned} \begin{aligned}&G(u_3,X_d)=I+\hat{G}(u_3,X_d)=I+\left[ \int _{\varOmega _x}\left( (u_3)_Y-(\bar{u}_3)_Y\right) \left( Y_d-\bar{Y}_d\right) ^T dY\right] \\&\quad \left[ \int _{\varOmega _x}\left( Y_d-\bar{Y}_d\right) \left( Y_d-\bar{Y}_d\right) ^T dY\right] ^{-1}, \end{aligned} \end{aligned}$$
(36)

where I is the identity tensor. Replacing the terms in Eq. (36) with those given in Eqs. (34) and (35), we get,

$$\begin{aligned} \begin{aligned} {G} \approx&{I+\left[ \int _{\varOmega _x}\left( (u_3)_X+\triangledown (u_3,X_d)(Y_d-X_d)-((u_3)_X+ \triangledown (u_3,X_d)(\overline{Y_d-X_d}))\right) \left( Y_d-\bar{Y}_d\right) ^TdY\right] }.\\&{I+\left[ \int _{\varOmega _X} (Y_d-\bar{Y}_d)(Y_d-\bar{Y}_d)^T dY\right] ^{-1}}\\ =&{I+\left[ \int _{\varOmega _x}\triangledown (u_3,X_d)(Y_d-X_d-\overline{Y_d-X_d}) \left( Y_d-\bar{Y}_d\right) ^TdY\right] } {\left[ \int _{\varOmega _X} (Y_d-\bar{Y}_d)(Y_d-\bar{Y}_d)^TdY\right] ^{-1}}\\ =&{I+\triangledown (u_3,X_d)\left[ \int _{\varOmega _x}(Y_d-X_d-\bar{Y}_d-\bar{X}_d) \left( Y_d-\bar{Y}_d\right) ^TdY\right] } {\left[ \int _{\varOmega _X} (Y_d-\bar{Y}_d)(Y_d-\bar{Y}_d)^T dY\right] ^{-1}}\\ =&{I+\triangledown (u_3,X_d)\left[ \int _{\varOmega _x}(Y_d-\bar{Y}_d)\left( Y_d-\bar{Y}_d\right) ^TdY\right] } {\left[ \int _{\varOmega _X} (Y_d-\bar{Y}_d)(Y_d-\bar{Y}_d)^T dY\right] ^{-1}}\\ =&{I+\triangledown (u_3,X_d)}\\ =&{F} \end{aligned} \end{aligned}$$
(37)

where F is the classical deformation gradient.

Appendix 2: Comparison of DFCT based non-local deformation gradient and PD based counterpart

The following non-local gradient term in the DFCT is actually rooted in measure theory and has been derived via a stochastic projection technique [33]. A similar expression may also be found in stochastic filtering [42, 43].

$$\begin{aligned} \begin{aligned}&{ {\hat{G}_{DFCT}(u_3,X_d)=\left[ \int _{\varOmega _x}\left( (u_3)_Y-(\bar{u}_3)_Y\right) \left( Y_d-\bar{Y}_d\right) ^T dY\right] \left[ \int _{\varOmega _x}\left( Y_d-\bar{Y}_d\right) \left( Y_d-\bar{Y}_d\right) ^T dY\right] ^{-1}}} \end{aligned} \end{aligned}$$
(38)

On the other hand, the non-local gradient term for the PD correspondence may be written as [44,45,46]:

$$\begin{aligned} \begin{aligned}&{ {\hat{G}_{PD}(u_3,X_d)=\left[ \int _{\varOmega _x}\left( (u_3)_Y-({u_3})_X\right) \left( Y_d-X_d\right) ^T dY\right] \left[ \int _{\varOmega _x}\left( Y_d-X_d\right) \left( Y_d-X_d\right) ^T dY\right] ^{-1}}} \end{aligned} \end{aligned}$$
(39)

The above two expressions become identically same when \({(u_3)_X}\) and \({{X}_d}\), which is perhaps the case when there are detectable symmetries (e.g. through material homogeneity and/or symmetries in applied loading configurations). This is however not true in general and accordingly the two expressions differ. To numerically assess the performances of the two expressions, we have considered a shear deformable plate model, arrived at via constitutive correspondences using PD [47,48,49] and DFCT gradient terms. For simplicity, the material properties of the plate have been kept uniform and boundary conditions in the form of simple supports are considered at all the four sides of the plate. Under a uniform distribution of particles, the two approaches give the same solution. However, for random distribution, the PD variant exhibits unphysical oscillations, whereas the DFCT appears to work fine (see Fig 18).

Fig. 18
figure 18

Comparison of zero energy oscillations in simply supported shear deformable plate subjected to uniformly distributed load when analysed via (a) PD and (b) proposed method

Appendix 3: Equivalence of shear deformable plate theory and the shear-rigid plate theory in static case

Here we demonstrate that the derivative-free shear deformable plate theory is equivalent to shear-rigid (Kirchhoff) plate theory for a thin plate. The non-local governing equations for the shear deformable plate subjected to transverse load q/unit area can be written as:

$$\begin{aligned}&{ {D\hat{G}(\hat{G}(\varPhi _1,X_1),X_1)+D\mu \hat{G}(\hat{G}(\varPhi _{2},X_1),X_2)}}\nonumber \\ {}&{ {+\frac{\mathcal {S} h^3}{12}\left( \hat{G}(\hat{G}(\varPhi _1,X_2),X_2)+\hat{G}(\hat{G}(\varPhi _{2},X_2),X_1)\right) -k_s\mathcal {S} h\left( \hat{G}(u_3,X_1)+\varPhi _1\right) =0}}\nonumber \\ \end{aligned}$$
(40)
$$\begin{aligned}&{ {D\hat{G}(\hat{G}(\varPhi _{2},X_2),X_2)+D\mu \hat{G}(\hat{G}(\varPhi _{1},X_1),X_2)}}\nonumber \\ {}&{ {+\frac{\mathcal {S} h^3}{12}\left( \hat{G}(\hat{G}(\varPhi _{2},X_1),X_1)+\hat{G}(\hat{G}(\varPhi _{1},X_2),X_1)\right) -k_s\mathcal {S} h\left( \hat{G}(u_3,X_2)+\varPhi _{2}\right) =0}} \end{aligned}$$
(41)
$$\begin{aligned}&{ {k_s\mathcal {S} h\left( \hat{G}(\hat{G}(u_3,X_1),X_1)+\hat{G}(\varPhi _1,X_1)\right) +k_s\mathcal {S} h\left( \hat{G}(\hat{G}(u_3,X_2),X_2)+\hat{G}(\varPhi _{2},X_2)\right) }}\nonumber \\ {}&{ {+\vartheta _1\hat{G}(\hat{G}(u_3,X_1),X_1)+\vartheta _2\hat{G}(\hat{G}(u_3,X_2),X_2)-q=0}} \end{aligned}$$
(42)

Equations 40 and 41 may be written as:

$$\begin{aligned}&{ {D\hat{G}(\hat{G}(\hat{G}(\varPhi _1,X_1),X_1),X_1)+D\mu \hat{G}(\hat{G}(\hat{G}(\varPhi _{2},X_1),X_2),X_1)}}\nonumber \\&+\frac{\mathcal {S} h^3}{12}\left( \hat{G}(\hat{G}(\hat{G}(\varPhi _1,X_2),X_2),X_1)+\hat{G}(\hat{G}(\hat{G}(\varPhi _{2},X_2),X_1),X_1) \right) \nonumber \\&-k_s\mathcal {S} h\left( \hat{G}(\hat{G}(u_3,X_1),X_1)+\hat{G}(\varPhi _1,X_1)\right) =0\nonumber \\ \end{aligned}$$
(43)
$$\begin{aligned}&{ {D\hat{G}(\hat{G}(\hat{G}(\varPhi _{2},X_2),X_2),X_2)+D\mu \hat{G}(\hat{G}(\hat{G}(\varPhi _{1},X_1),X_2),X_2)}}\nonumber \\&+\frac{\mathcal {S} h^3}{12}\left( \hat{G}(\hat{G}(\hat{G}(\varPhi _{2},X_1),X_1),X_2)+\hat{G}(\hat{G}(\hat{G}(\varPhi _{1} ,X_2),X_1),X_2)\right) \nonumber \\&-k_s\mathcal {S} h\left( \hat{G}(\hat{G}(u_3,X_2),X_2)+\hat{G}(\varPhi _{2},X_2)\right) =0 \end{aligned}$$
(44)

Upon adding the Eqs. 43 and 44, we get:

$$\begin{aligned} \begin{aligned}&{ {D\hat{G}(\hat{G}(\hat{G}(\varPhi _1,X_1),X_1),X_1)+D\hat{G}(\hat{G}(\hat{G}(\varPhi _{2},X_2),X_2),X_2)}}\\ {}&{ {D\hat{G}(\hat{G}(\hat{G}(\varPhi _1,X_1),X_2),X_2)\left( \mu +\frac{2\mathcal {S}h^3}{12D}\right) +D\hat{G}(\hat{G}(\hat{G}(\varPhi _{2},X_1),X_1),X_2)\left( \mu +\frac{2\mathcal {S}h^3}{12D}\right) }}\\ {}&{ {-{k_s\mathcal {S} h}\left( \hat{G}(\hat{G}(u_3,X_1),X_1)+\hat{G}(\varPhi _1,X_1)\right) -{k_s\mathcal {S} h}\left( \hat{G}(\hat{G}(u_3,X_2),X_2)+\hat{G}(\varPhi _{2},X_2)\right) =0}} \end{aligned} \end{aligned}$$
(45)

Using the fact that, \({\left( \mu +\frac{2\mathcal {S}h^3}{12D}\right) =1}\), the above Eqn takes the form:

$$\begin{aligned} \begin{aligned}&{ {D\hat{G}(\hat{G}(\hat{G}(\varPhi _1,X_1),X_1),X_1)+D\hat{G}(\hat{G}(\hat{G}(\varPhi _{2},X_2),X_2),X_2)}}\\ {}&{ {D\hat{G}(\hat{G}(\hat{G}(\varPhi _1,X_1),X_2),X_2)+D\hat{G}(\hat{G}(\hat{G}(\varPhi _{2},X_1),X_1),X_2)}}\\ {}&{ {-{k_s\mathcal {S} h}\left( \hat{G}(\hat{G}(u_3,X_1),X_1)+\hat{G}(\varPhi _1,X_1)\right) -{k_s\mathcal {S} h}\left( \hat{G}(\hat{G}(u_3,X_2),X_2)+\hat{G}(\varPhi _{2},X_2)\right) =0}} \end{aligned} \end{aligned}$$
(46)

However, Eq. 42 may be rewritten as:

$$\begin{aligned} \begin{aligned}&{ {k_s\mathcal {S} h\left( \hat{G}(\hat{G}(\hat{G}(\hat{G}(u_3,X_1),X_1),X_1),X_1)+\hat{G}(\hat{G}(\hat{G} (\varPhi _1,X_1),X_1),X_1)\right) }}\\ {}&{ {+k_s\mathcal {S} h\left( \hat{G}(\hat{G}(\hat{G}(\hat{G}(u_3,X_2),X_2),X_1),X_1)+\hat{G}(\hat{G}(\hat{G} (\varPhi _{2},X_2),X_1),X_1)\right) }}\\ {}&+\vartheta _1\hat{G}(\hat{G}(\hat{G}(\hat{G}(u_3,X_1),X_1),X_1),X_1)+\vartheta _2\hat{G} (\hat{G}(\hat{G}(\hat{G}(u_3,X_2),X_2),X_1),X_1)\\&-\hat{G}(\hat{G}(q,X_1),X_1)=0 \end{aligned} \end{aligned}$$
(47)

and,

$$\begin{aligned} \begin{aligned}&{ {k_s\mathcal {S} h\left( \hat{G}(\hat{G}(\hat{G}(\hat{G}(u_3,X_1),X_1),X_2),X_2)+\hat{G}(\hat{G}(\hat{G} (\varPhi _1,X_1),X_2),X_2)\right) }}\\ {}&{ {+k_s\mathcal {S} h\left( \hat{G}(\hat{G}(\hat{G}(\hat{G}(u_3,X_2),X_2),X_2),X_2)+\hat{G}(\hat{G}(\hat{G} (\varPhi _{2},X_2),X_2),X_2)\right) }}\\ {}&+\vartheta _1\hat{G}(\hat{G}(\hat{G}(\hat{G}(u_3,X_1),X_1),X_2),X_2)+\vartheta _2\hat{G} (\hat{G}(\hat{G}(\hat{G}(u_3,X_2),X_2),X_2),X_2)\\&-\hat{G}(\hat{G}(q,X_2),X_2)=0 \end{aligned} \end{aligned}$$
(48)

Adding the Eqs. 47 and 48, we get:

$$\begin{aligned} \begin{aligned}&{ {k_s\mathcal {S} h\left( \hat{G}(\hat{G}(\hat{G}(\hat{G}(u_3,X_1),X_1),X_1),X_1)+\hat{G}(\hat{G}(\hat{G} (\varPhi _1,X_1),X_1),X_1)\right) }}\\ {}&{ {+k_s\mathcal {S} h\left( \hat{G}(\hat{G}(\hat{G}(\hat{G}(u_3,X_1),X_1),X_1),X_1)+\hat{G}(\hat{G}(\hat{G} (\varPhi _1,X_1),X_2),X_2)\right) }}\\ {}&{ {+k_s\mathcal {S} h\left( \hat{G}(\hat{G}(\hat{G}(\hat{G}(u_3,X_2),X_2),X_1),X_1)+\hat{G}(\hat{G}(\hat{G} (\varPhi _{2},X_2),X_1),X_1)\right) }}\\ {}&+\vartheta _1\hat{G}(\hat{G}(\hat{G}(\hat{G}(u_3,X_1),X_1),X_1),X_1)+\vartheta _2\hat{G} (\hat{G}(\hat{G}(\hat{G}(u_3,X_2),X_2),X_1),X_1)\\&-\hat{G}(\hat{G}(q,X_1),X_1)\\&{ {+k_s\mathcal {S} h\left( \hat{G}(\hat{G}(\hat{G}(\hat{G}(u_3,X_2),X_2),X_1),X_1)+\hat{G}(\hat{G}(\hat{G} (\varPhi _{2},X_2),X_1),X_1)\right) }}\\ {}&+\vartheta _1\hat{G}(\hat{G}(\hat{G}(\hat{G}(u_3,X_1),X_1),X_1),X_1)+\vartheta _2\hat{G} (\hat{G}(\hat{G}(\hat{G}(u_3,X_2),X_2),X_1),X_1)\\&-\hat{G}(\hat{G}(q,X_1),X_1) =0 \end{aligned} \end{aligned}$$
(49)

Substituting Eqs. 44 in Eq. 49 and rearranging the terms leads to:

$$\begin{aligned} \begin{aligned}&D\left( \hat{G}(\hat{G}(\hat{G}(\hat{G}(u_3,X_1),X_1),X_1),X_1)+2\hat{G}(\hat{G}(\hat{G}(\hat{G}(u_3,X_1) ,X_1),X_2),X_2)\right. \\&\left. +\hat{G}(\hat{G}(\hat{G}(\hat{G}(u_3,X_2),X_2),X_2),X_2)\right) \\&+\vartheta _1\left( \frac{D}{k_s\mathcal {S}h}\left( \hat{G}(\hat{G}(\hat{G}(\hat{G}(u_3,X_1),X_1),X_1),X_1) \right. \right. \\&\left. \left. +\hat{G}(\hat{G}(\hat{G}(\hat{G}(u_3,X_1),X_1),X_2),X_2)\right) +\hat{G}(\hat{G}(u_3,X_1),X_1)\right) \\&+\vartheta _2\left( \frac{D}{k_s\mathcal {S}h}\left( \hat{G}(\hat{G}(\hat{G}(\hat{G}(u_3,X_2),X_2),X_2),X_2) +\hat{G}(\hat{G}(\hat{G}(\hat{G}(u_3,X_1),X_1),X_2),X_2)\right) \right. \\&\left. +\hat{G}(\hat{G}(u_3,X_2),X_2)\right) \\&{ {-q-\frac{D}{k_s\mathcal {S}h}\left( \hat{G}(\hat{G}(q,X_1),X_1)+\hat{G}(\hat{G}(q,X_2),X_2)\right) =0}} \end{aligned} \end{aligned}$$
(50)

With the assumption that for a shear rigid (Kirchhoff) plate:

$$\begin{aligned} \begin{aligned}&{ {\frac{D}{k_s\mathcal {S}h}<<1}} \end{aligned} \end{aligned}$$
(51)

we arrive at the governing equation for a shear rigid plate in the static case.

$$\begin{aligned} \begin{aligned}&D\left( \hat{G}(\hat{G}(\hat{G}(\hat{G}(u_3,X_1),X_1),X_1),X_1)+2\hat{G}(\hat{G} (\hat{G}(\hat{G}(u_3,X_1),X_1),X_2),X_2)\right. \\&\left. +\hat{G}(\hat{G}(\hat{G}(\hat{G}(u_3,X_2),X_2),X_2),X_2)\right) \\ {}&{ {+\vartheta _1\left( \hat{G}(\hat{G}(u_3,X_1),X_1)\right) } {+\vartheta _2\left( \hat{G}(\hat{G}(u_3,X_2),X_2)\right) -q=0}} \end{aligned} \end{aligned}$$
(52)

Therefore, with the assumption that \({\frac{D}{k_s\mathcal {S}h}<<1}\), the shear deformable plate theory becomes equivalent to shear-rigid (Kirchhoff) plate theory for a thin plate.

Appendix 4: Computation of analytical expressions for \({\hat{G}(\hat{G}(\xi ,X_d),X_d)}\)

Let us assume a field variable \(\xi\) defined by the far-off interactions of any material point \(\varvec{X}\) such that,

$$\begin{aligned} \begin{aligned}&{\xi }= {\xi ^0\,\,\text{sin}(\alpha X_1)\,\,\text{sin}(\beta X_2)} \end{aligned} \end{aligned}$$
(53)

The derivative-free directionality term \({\hat{G}(\xi ,X_1)}\) and \({\hat{G}(\xi ,X_2)}\) can be computed as:

$$\begin{aligned} \begin{aligned}&{\hat{G}(\xi ,X_1)= \left[ \int _{\varOmega _X}( {\xi -\overline{\xi }})( {(Y_1-\overline{Y}_1})^TdY_1\right] \left[ \int _{\varOmega _X}( {Y_1-\overline{Y}_1})( {(Y_1-\overline{Y}_1})^TdY_1\right] ^{-1}}\\&{\hat{G}(\xi ,X_2)= \left[ \int _{\varOmega _X}( {\xi -\overline{\xi }})( {(Y_2-\overline{Y}_2})^TdY_2\right] \left[ \int _{\varOmega _X}( {Y_2-\overline{Y}_2})( {Y_2-\overline{Y}_2})^TdY_2\right] ^{-1}} \end{aligned} \end{aligned}$$
(54)

For an influence domain of definite length \({r_c}\), the above expressions take the form,

$$\begin{aligned} \begin{aligned}&{\hat{G}(\xi ,X_1)}=\\ {}&{ \left[ \int _{X_1-r_c}^{X_1+r_c}( {\xi -\overline{\xi }})( {Y_1-\overline{Y}_1})^TdY_1\right] \left[ \int _{X_1-r_c}^{X_1+r_c}( {Y_1-\overline{Y}_1})( {Y_1-\overline{Y}_1})^TdY_1\right] ^{-1}}\\ {}&{\hat{G}(\xi ,X_2)}=\\ {}&{ \left[ \int _{X_2-r_c}^{X_2+r_c}( {\xi -\overline{\xi }})( {Y_2-\overline{Y}_2})^TdY_2\right] \left[ \int _{X_2-r_c}^{X_2+r_c}( {Y_2-\overline{Y}_2})( {Y_2-\overline{Y}_2})^TdY_2\right] ^{-1}} \end{aligned} \end{aligned}$$
(55)

where,

$$\begin{aligned} \begin{aligned}&{ \left[ \int _{X_1-r_c}^{X_1+r_c}( {Y_1-\overline{Y}_1})( {Y_1-\overline{Y}_1})^TdY_1\right] =\frac{2r_c^3}{3}}\\&{ \left[ \int _{X_2-r_c}^{X_2+r_c}( {Y_2-\overline{Y}_2})( {Y_2-\overline{Y}_2})^TdY_2\right] =\frac{2r_c^3}{3}}\\ \end{aligned} \end{aligned}$$
(56)

Substitution of Eq. (56) in the the Eq. (55) yields:

$$\begin{aligned} \begin{aligned} {\hat{G}(\xi ,X_1)}=&{-C_1\xi ^0\text{cos}(\alpha X_1)\,\text{sin}(\beta X_2)}\\ {\hat{G}(\xi ,X_2)}=&{-C_2\xi ^0\text{sin}(\alpha X_1)\,\text{cos}(\beta X_2)}\\ \end{aligned} \end{aligned}$$
(57)

where,

$$\begin{aligned} {} \begin{aligned}&{C_1=\frac{3}{\alpha ^2r_c^3}\left( \alpha r_c \text{cos}\left( {\alpha r_c}\right) - \text{sin}\left( {\alpha r_c}\right) \right) }\\&{C_2=\frac{3}{\beta ^2r_c^3}\left( \beta r_c \text{cos}\left( {\beta r_c}\right) - \text{sin}\left( {\beta r_c}\right) \right) } \end{aligned} \end{aligned}$$
(58)

The expression for \({\hat{G}\left( \hat{G}\left( \xi ,X_1\right) ,X_1\right) }\) can be computed as:

$$\begin{aligned} \begin{aligned} {\hat{G}\left( \hat{G}\left( \xi ,X_1\right) ,X_1\right) }=&{ \left[ \int _{X_1-r_c}^{X_1+r_c}( {\hat{G}(\xi ,X_1)-\overline{\hat{G}(\xi ,X_1)}})( {Y_1-\overline{Y}_1})^TdY_1\right] \frac{3}{2rc^3}}\\ =&{C_1^2\xi ^0\text{sin}(\alpha X_1)\,\text{sin}(\beta X_2)} \end{aligned} \end{aligned}$$
(59)

Similarly,

$$\begin{aligned} \begin{aligned} {\hat{G}\left( \hat{G}\left( \xi ,X_2\right) ,X_2\right) }=&{ \left[ \int _{X_2-r_c}^{X_2+r_c}( {\hat{G}(\xi ,X_2)-\overline{\hat{G}(\xi ,X_2)}})( {Y_2-\overline{Y}_2})^TdY_2\right] \frac{3}{2rc^3}}\\ =&{C_2^2\xi ^0\text{sin}(\alpha X_1)\,\text{sin}(\beta X_2)} \end{aligned} \end{aligned}$$
(60)

and,

$$\begin{aligned} \begin{aligned} {\hat{G}\left( \hat{G}\left( \xi ,X_1\right) ,X_2\right) }=&{ \left[ \int _{X_2-r_c}^{X_2+r_c}( {\hat{G}(\xi ,X_1)-\overline{\hat{G}(\xi ,X_1)}})( {Y_2-\overline{Y}_2})^TdY_2\right] \frac{3}{2rc^3}}\\ =&{C_1C_2\xi ^0\text{sin}(\alpha X_1)\,\text{sin}(\beta X_2)} \end{aligned} \end{aligned}$$
(61)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saxena, M., Sarkar, S. & Reddy, J.N. Modelling architected plate using a non-local derivative-free shear deformable plate theory. Meccanica 58, 1671–1692 (2023). https://doi.org/10.1007/s11012-023-01677-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-023-01677-y

Keywords

Navigation