Skip to main content
Log in

A subinterval bivariate dimension-reduction method for nonlinear problems with uncertainty parameters

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

A subinterval bivariate dimension-reduction method is proposed to predict the upper and lower bounds of nonlinear problems with uncertain-but-bounded parameters, especially for nonmonotonic problems. The existing interval function decomposition method solves the dimensional curse problem, but is only suitable for the monotone case. To address this limitation, the original structural response function with multidimensional interval parameters is decomposed by the bivariate dimension-reduction method into a set of univariate and bivariate interval response functions, and then the interval parameters are partitioned into some subintervals with low uncertainty. The upper and lower bounds of the structural response are approximately predicted not by analyzing all discrete points in the entire uncertain domain, but by calculating the responses at bivariate points, univariate points, and the midpoint, which can improve the computational efficiency. Finally, the accuracy and efficiency of the proposed method are verified using several numerical examples and engineering applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Impollonia N, Muscolino G (2002) Static and dynamic analysis of non-linear uncertain structures. Meccanica 37:179–192

    MATH  Google Scholar 

  2. Santoro R, Muscolino G (2019) Dynamics of beams with uncertain crack depth: stochastic versus interval analysis. Meccanica 54:1433–1449

    MathSciNet  Google Scholar 

  3. Sofi A, Muscolino G, Giunta F (2019) Fatigue analysis of structures with interval axial stiffness subjected to stationary stochastic excitations. Meccanica 54:1471–1487

    MathSciNet  Google Scholar 

  4. Kiureghian AD, Ditlevsen O (2009) Aleatory or epistemic? Does it matter? Struct Saf 31:105–112

    Google Scholar 

  5. Mullins J, Ling Y, Mahadevan S et al (2016) Separation of aleatory and epistemic uncertainty in probabilistic model validation. Reliab Eng Syst Saf 147:49–59

    Google Scholar 

  6. Zaman K, Mahadevan S (2017) Reliability-based design optimization of multidisciplinary system under aleatory and epistemic uncertainty. Struct Multidiscip Optim 55:681–699

    MathSciNet  Google Scholar 

  7. Zheng Z, Dai H (2021) Structural stochastic responses determination via a sample-based stochastic finite element method. Comput Methods Appl Mech Eng 381:113824

    MathSciNet  MATH  Google Scholar 

  8. Nogueira BF, Ritto TG (2018) Stochastic torsional stability of an oil drill-string. Meccanica 53:3047–3060

    MathSciNet  Google Scholar 

  9. Lacour M, Macedo J, Abrahamson NA (2020) Stochastic finite element method for non-linear material models. Comput Geotech 125:103641

    Google Scholar 

  10. Ben-Haim Y, Elishakoff I (2013) Convex models of uncertainty in applied mechanics. Elsevier

    MATH  Google Scholar 

  11. Cavalini AA, Silva ADG, Lara-Molina FA, Steffen V (2017) Dynamic analysis of a flexible rotor supported by hydrodynamic bearings with uncertain parameters. Meccanica 52:2931–2943

    MathSciNet  Google Scholar 

  12. Dourado ADP, Lobato FS, Cavalini AA, Steffen V (2019) Fuzzy reliability-based optimization for engineering system design. Int J Fuzzy Syst 21:1418–1429

    Google Scholar 

  13. Zheng Y, Zhao H, Zhen S, He C (2021) Designing robust control for permanent magnet synchronous motor: fuzzy based and multivariable optimization approach. IEEE Access 9:39138–39153

    Google Scholar 

  14. Sofi A, Romeo E (2016) A novel interval finite element method based on the improved interval analysis. Comput Methods Appl Mech Eng 311:671–697

    MathSciNet  MATH  Google Scholar 

  15. Wei T, Li F, Meng G, Zuo W (2021) Static response analysis of uncertain structures with large-scale unknown-but-bounded parameters. Int J Appl Mech 13:2150004

    Google Scholar 

  16. Sofi A, Romeo E, Barrera O, Cocks A (2019) An interval finite element method for the analysis of structures with spatially varying uncertainties. Adv Eng Softw 128:1–19

    Google Scholar 

  17. Moore RE (1966) Interval analysis. Prentice-Hall, Englewood Cliffs

    MATH  Google Scholar 

  18. Moore RE (1979) Methods and applications of interval analysis. SIAM, Philadelphia

    MATH  Google Scholar 

  19. Alefeld G, Herzberger J (2012) Introduction to interval computation. Academic Press, New York

    MATH  Google Scholar 

  20. Fu C, Ren X, Yang Y, Qin W (2017) Dynamic response analysis of an overhung rotor with interval uncertainties. Nonlinear Dyn 89:2115–2124

    Google Scholar 

  21. Rao SS, Berke L (1997) Analysis of uncertain structural systems using interval analysis. AIAA J 35:727–735

    MATH  Google Scholar 

  22. Qiu Z, Wang X, Chen J (2006) Exact bounds for the static response set of structures with uncertain-but-bounded parameters. Int J Solids Struct 43:6574–6593

    MathSciNet  MATH  Google Scholar 

  23. Qiu Z, Xia Y, Yang J (2007) The static displacement and the stress analysis of structures with bounded uncertainties using the vertex solution theorem. Comput Methods Appl Mech Eng 196:4965–4984

    MATH  Google Scholar 

  24. Qiu Z, Lv Z (2017) The vertex solution theorem and its coupled framework for static analysis of structures with interval parameters. Int J Numer Methods Eng 112:711–736

    MathSciNet  Google Scholar 

  25. Gao W (2006) Interval dynamic analysis using interval factor method. In: Yao ZH, Yuan MW (eds) Computational methods in engineering & science. Springer, Berlin, pp 332–332

    Google Scholar 

  26. Gao W (2007) Interval finite element analysis using interval factor method. Comput Mech 39:709–717

    MATH  Google Scholar 

  27. Chen S, Lian H, Yang X (2002) Interval static displacement analysis for structures with interval parameters. Int J Numer Methods Eng 53:393–407

    MATH  Google Scholar 

  28. Ma Y, Liang Z, Chen M, Hong J (2013) Interval analysis of rotor dynamic response with uncertain parameters. J Sound Vib 332:3869–3880

    Google Scholar 

  29. Xia B, Yu D (2013) Modified interval perturbation finite element method for a structural-acoustic system with interval parameters. J Appl Mech 80:041027

    Google Scholar 

  30. Qiu Z, Zhu B (2021) A Newton iteration-based interval analysis method for nonlinear structural systems with uncertain-but-bounded parameters. Int J Numer Methods Eng 122:4922–4943

    MathSciNet  Google Scholar 

  31. Chen SH, Wu J (2004) Interval optimization of dynamic response for structures with interval parameters. Comput Struct 82:1–11

    Google Scholar 

  32. Wu J, Zhang Y, Chen L, Luo Z (2013) A Chebyshev interval method for nonlinear dynamic systems under uncertainty. Appl Math Model 37:4578–4591

    MathSciNet  MATH  Google Scholar 

  33. Wu J, Luo Z, Zhang N, Zhang Y (2015) A new interval uncertain optimization method for structures using Chebyshev surrogate models. Comput Struct 146:185–196

    Google Scholar 

  34. Wang C, Qiu Z, Yang Y (2016) Collocation methods for uncertain heat convection-diffusion problem with interval input parameters. Int J Therm Sci 107:230–236

    Google Scholar 

  35. Liu Y, Wang X, Li Y (2021) An improved Bayesian collocation method for steady-state response analysis of structural dynamic systems with large interval uncertainties. Appl Math Comput 411:126523

    MathSciNet  MATH  Google Scholar 

  36. Liu Y, Wang X, Wang L (2019) Interval uncertainty analysis for static response of structures using radial basis functions. Appl Math Model 69:425–440

    MathSciNet  MATH  Google Scholar 

  37. Wang L, Chen Z, Yang G (2020) An interval uncertainty analysis method for structural response bounds using feedforward neural network differentiation. Appl Math Model 82:449–468

    MathSciNet  MATH  Google Scholar 

  38. Wang L, Liu Y, Gu K, Wu T (2020) A radial basis function artificial neural network (RBF ANN) based method for uncertain distributed force reconstruction considering signal noises and material dispersion. Comput Methods Appl Mech Eng 364:112954

    MathSciNet  MATH  Google Scholar 

  39. Wei T, Li F, Meng G et al (2021) Bounds for uncertain structural problems with large-range interval parameters. Arch Appl Mech 91:1157–1177

    Google Scholar 

  40. Wu F, Gong MQ, Yao LY et al (2020) High precision interval analysis of the frequency response of structural-acoustic systems with uncertain-but-bounded parameters. Eng Anal Bound Elem 119:190–202

    MathSciNet  MATH  Google Scholar 

  41. Wu F, Gong MQ, Ji J et al (2019) Interval and subinterval perturbation finite element-boundary element method for low-frequency uncertain analysis of structural-acoustic systems. J Sound Vib 462:114939

    Google Scholar 

  42. Long XY, Jiang C, Han X et al (2018) An enhanced subinterval analysis method for uncertain structural problems. Appl Math Model 54:580–593

    MathSciNet  MATH  Google Scholar 

  43. Liu D, Qiu Z (2021) A subinterval dimension-wise method for robust topology optimization of structures with truss-like lattice material under unknown but bounded uncertainties. Struct Multidiscip Optim 64:1241–1258

    MathSciNet  Google Scholar 

  44. Fu C, Cao L (2019) An uncertain optimization method based on interval differential evolution and adaptive subinterval decomposition analysis. Adv Eng Softw 134:1–9

    Google Scholar 

  45. Wang L, Zhao X, Liu D (2022) Size-controlled cross-scale robust topology optimization based on adaptive subinterval dimension-wise method considering interval uncertainties. Eng Comput. https://doi.org/10.1007/s00366-022-01615-8

    Article  Google Scholar 

  46. Zhou YT, Jiang C, Han X (2006) Interval and subinterval analysis methods of the structural analysis and their error estimations. Int J Comput Methods 3:229–244

    MathSciNet  MATH  Google Scholar 

  47. Fu CM, Cao LX, Tang JC, Long XY (2018) A subinterval decomposition analysis method for uncertain structures with large uncertainty parameters. Comput Struct 197:58–69

    Google Scholar 

  48. Yu M, Dong XM, Choi SB, Liao CR (2009) Human simulated intelligent control of vehicle suspension system with MR dampers. J Sound Vib 319:753–767

    Google Scholar 

  49. Liu G-R, Han X (2003) Computational inverse techniques in nondestructive evaluation. CRC Press

    MATH  Google Scholar 

Download references

Funding

The research was funded by the National Natural Science Foundation of China (Grant No. 51775230).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tonghui Wei.

Ethics declarations

Conflict of interests

All the authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1: interval analysis using Taylor series expansion

An approximate response function \({f^*}\left( \varvec{x} \right)\) using second-order Taylor series expansion around the midpoint of the interval vector can be described as follows:

$${f^*}\left( {{\varvec{x}^{\rm{I}}}} \right) = f\left( {{\varvec{x}^{\rm{C}}}} \right) + \sum\limits_{i = 1}^n {{f_{,{x_i}}}\left( {{x_i} - x_i^{\rm{C}}} \right)} + \frac{1}{2}\sum\limits_{i = 1}^n {\sum\limits_{j = 1}^n {{f_{,{x_i}{x_j}}}\left( {{x_i} - x_i^{\rm{C}}} \right)} } \left( {{x_j} - x_j^{\rm{C}}} \right)$$
(34)

where \(f_{{,x_{i} }}\) and \(f_{{,x_{i} x_{j} }}\) denote first- and second-order differentiation \(\partial f\left( \varvec{x} \right)/\partial {x_i}{\left| x \right._i} = x_i^{\rm{C}}\) and \({\partial ^2}f\left( \varvec{x} \right)/\partial {x_i}\partial {x_j}{\left| x \right._i} = x_i^{\rm{C}},{\left| x \right._j} = x_j^{\rm{C}}\) of the objective function at the midpoint, respectively.

If only the first order differentiation is considered, the response bounds of the first-order Taylor expansion can be expressed as:

$$\begin{aligned} f^{{\text{L}}} \left( {{\varvec{x}^{\rm{I}}}} \right) & = f\left( {{\varvec{x}^{\rm{C}}}} \right) - \sum\limits_{i = 1}^{n} {\left| {f_{{,x_{i} }} x_{i}^{{\text{R}}} } \right|} \\ f^{{\text{U}}} \left( {{\varvec{x}^{\rm{I}}}} \right) & = f\left( {{\varvec{x}^{\rm{C}}}} \right) + \sum\limits_{i = 1}^{n} {\left| {f_{{,x_{i} }} x_{i}^{{\text{R}}} } \right|} \\ \end{aligned}$$
(35)

The approximation using the first-order Taylor series expansion requires only a few calculations, but its results may contain large errors, especially in the case of nonlinearity and large uncertainties. In order to improve the accuracy of interval analysis, the second-order Taylor series expansion approximation method retains the second-order differentiation. In this case, there is a dependence phenomenon of the interval parameters, and using the interval algorithm can easily lead to overestimation. When n is large, calculating all elements of the Hessian matrix requires significant computational effort. Therefore, a simplified method that ignores the nondiagonal elements of the Hessian matrix is proposed. The response bounds of the second-order Taylor method are expressed as follows:

$$\begin{aligned} f^{{\text{L}}} \left( {{\varvec{x}^{\rm{I}}}} \right) & = f\left( {{\varvec{x}^{\rm{C}}}} \right) - \sum\limits_{i = 1}^{n} {\left| {f_{{,x_{i} }} x_{i}^{{\text{R}}} } \right|} + \frac{1}{2}\sum\limits_{i = 1}^{n} {f_{{,x_{i} x_{i} }} \left( {x_{i}^{{\text{R}}} } \right)^{2} } \\ f^{{\text{U}}} \left( {{\varvec{x}^{\rm{I}}}} \right) & = f\left( {{\varvec{x}^{\rm{C}}}} \right) + \sum\limits_{i = 1}^{n} {\left| {f_{{,x_{i} }} x_{i}^{{\text{R}}} } \right|} + \frac{1}{2}\sum\limits_{i = 1}^{n} {f_{{,x_{i} x_{i} }} \left( {x_{i}^{{\text{R}}} } \right)^{2} } \\ \end{aligned}$$
(36)

Appendix 2: The error estimation of the bivariate dimension-reduction

For the simplicity of exposition, n is given as 3 in the following formulation. For n > 3, the error estimation process is the same, but it has more expression terms and the computation is more time consuming. From Eq. (15), the bivariate dimension-reduction approximation contains the higher order differentials of univariate and bivariate terms. Therefore, it has higher approximation accuracy than the interval analysis method based on the Taylor expansion method.

The truncation error \(R_{3}^{{\text{I}}}\) of the bivariate dimension-reduction approximation of \(f\left( {{\varvec{x}^{\rm{I}}}} \right)\) is expressed as follows:

$$R_3^{\rm{I}} = \frac{{{\partial ^3}f({\varvec{x}^{\rm{C}}} + \theta \delta \varvec{x})}}{{\partial {x_1}\partial {x_2}\partial {x_3}}}\delta {x_1}\delta {x_2}\delta {x_3},{\mkern 1mu} 0 < \theta < 1$$
(37)

Using

$$g\left( \varvec{a} \right) = \frac{{{\partial ^3}f({\varvec{x}^{\rm{C}}} + \varvec{a})}}{{\partial {a_1}\partial {a_2}\partial {a_3}}},{\mkern 1mu} {\rm{ }} - {\varvec{x}^{\rm{R}}} < \varvec{a} < {\varvec{x}^{\rm{R}}}$$
(38)

Eq. (37) can be rewritten as follows:

$$R_{3}^{{\text{I}}} = g(\theta \delta {\varvec{x}})\delta x_{1} \delta x_{2} \delta x_{3} ,\quad 0 < \theta < 1$$
(39)

Here the method of linear approximation [46, 49] is introduced to deal with \(g({\varvec{a}})\), namely for the small interval vector \({\varvec{x}^{\rm{I}}}\). \(g({\varvec{a}})\) can be approximately replaced by a 3D space within the volume defined by \(- x_{1}^{{\text{R}}} < a_{1} < x_{1}^{{\text{R}}}\), \(- x_{2}^{{\text{R}}} < a_{2} < x_{2}^{{\text{R}}}\) and \(- x_{3}^{{\text{R}}} < a_{3} < x_{3}^{{\text{R}}}\).The linear approximation of the function \(g({\varvec{a}})\) at (0,0,0) is:

$$g({\varvec{a}}) \approx L(a_{1} ,a_{2} ,a_{3} ) = l_{0} + l_{1} a_{1} + l_{2} a_{2} + l_{3} a_{3} , \, - {\varvec{x}}^{{\text{R}}} < {\varvec{a}} < {\varvec{x}}^{{\text{R}}}$$
(40)

where the coefficient vectors \(l_{0}\), \(l_{1}\), \(l_{2}\) and \(l_{3}\) can be determined by:

$$\begin{aligned} l_{0} & = g(0,0,0) \\ l_{1} & = \frac{{g(x_{1}^{{\text{R}}} ,0,0) - g( - x_{1}^{{\text{R}}} ,0,0)}}{{2x_{1}^{{\text{R}}} }} \\ l_{2} & = \frac{{g(0,x_{2}^{{\text{R}}} ,0) - g(0, - x_{2}^{{\text{R}}} ,0)}}{{2x_{2}^{{\text{R}}} }} \\ l_{3} & = \frac{{g(0,0,x_{3}^{{\text{R}}} ) - g(0,0, - x_{3}^{{\text{R}}} )}}{{2x_{3}^{{\text{R}}} }} \\ \end{aligned}$$
(41)

Substituting Eqs. (40) and (41) into Eq. (39) we obtain:

$$R_{3}^{{\text{I}}} = \left( {l_{0} + l_{1} \theta \delta x_{1} + l_{2} \theta \delta x_{2} + l_{3} \theta \delta x_{3} } \right)\delta x_{1} \delta x_{2} \delta x_{3}$$
(42)

Since \(\delta x_{1}\), \(\delta x_{2}\) and \(\delta x_{3}\) are intervals, the interval of the error can be calculated by the natural expansion of interval mathematics [18]:

$$\begin{aligned} R_{3}^{{\text{I}}} & = \left( {l_{0} + l_{1} \theta [ - 1,1]x_{1}^{{\text{R}}} + l_{2} \theta [ - 1,1]x_{2}^{{\text{R}}} + l_{3} \theta [ - 1,1]x_{3}^{{\text{R}}} } \right)[ - 1,1]x_{1}^{{\text{R}}} x_{2}^{{\text{R}}} x_{3}^{{\text{R}}} \\ & = \left[ {\left| {l_{0} } \right|[ - 1,1]x_{1}^{{\text{R}}} x_{2}^{{\text{R}}} x_{3}^{{\text{R}}} + \left| {l_{1} } \right|\theta [ - 1,1]\left( {x_{1}^{R} } \right)^{2} x_{2}^{{\text{R}}} x_{3}^{{\text{R}}} + \left| {l_{2} } \right|\theta [ - 1,1]x_{1}^{{\text{R}}} \left( {x_{2}^{{\text{R}}} } \right)^{2} x_{3}^{{\text{R}}} + \left| {l_{3} } \right|\theta [ - 1,1]x_{1}^{{\text{R}}} x_{2}^{{\text{R}}} \left( {x_{3}^{{\text{R}}} } \right)^{2} } \right] \\ \end{aligned}$$
(43)

where |•| represents the absolute values for each component of the vector. Thus, the bounds of \(R_{3}^{I}\) can be obtained as follows:

$$\begin{aligned} R_{3}^{{\text{L}}} & = - \left[ {\left| {l_{0} } \right|x_{1}^{{\text{R}}} x_{2}^{{\text{R}}} x_{3}^{{\text{R}}} + \left| {l_{1} } \right|\theta \left( {x_{1}^{R} } \right)^{2} x_{2}^{{\text{R}}} x_{3}^{{\text{R}}} + \left| {l_{2} } \right|\theta x_{1}^{{\text{R}}} \left( {x_{2}^{{\text{R}}} } \right)^{2} x_{3}^{{\text{R}}} + \left| {l_{3} } \right|\theta x_{1}^{{\text{R}}} x_{2}^{{\text{R}}} \left( {x_{3}^{{\text{R}}} } \right)^{2} } \right] \\ R_{3}^{{\text{U}}} & = \left[ {\left| {l_{0} } \right|x_{1}^{{\text{R}}} x_{2}^{{\text{R}}} x_{3}^{{\text{R}}} + \left| {l_{1} } \right|\theta \left( {x_{1}^{{\text{R}}} } \right)^{2} x_{2}^{{\text{R}}} x_{3}^{{\text{R}}} + \left| {l_{2} } \right|\theta x_{1}^{{\text{R}}} \left( {x_{2}^{{\text{R}}} } \right)^{2} x_{3}^{{\text{R}}} + \left| {l_{3} } \right|\theta x_{1}^{{\text{R}}} x_{2}^{{\text{R}}} \left( {x_{3}^{{\text{R}}} } \right)^{2} } \right] \\ \end{aligned}$$
(44)

Owing to 0 < θ < 1, the following equations are obtained:

$$\begin{aligned} R_{3}^{{\text{L}}} & \ge - \left[ {\left| {l_{0} } \right|x_{1}^{{\text{R}}} x_{2}^{{\text{R}}} x_{3}^{{\text{R}}} + \left| {l_{1} } \right|\left( {x_{1}^{{\text{R}}} } \right)^{2} x_{2}^{{\text{R}}} x_{3}^{{\text{R}}} + \left| {l_{2} } \right|x_{1}^{{\text{R}}} \left( {x_{2}^{{\text{R}}} } \right)^{2} x_{3}^{{\text{R}}} + \left| {l_{3} } \right|x_{1}^{{\text{R}}} x_{2}^{{\text{R}}} \left( {x_{3}^{{\text{R}}} } \right)^{2} } \right] \\ R_{3}^{{\text{U}}} & \le \left[ {\left| {l_{0} } \right|x_{1}^{{\text{R}}} x_{2}^{{\text{R}}} x_{3}^{{\text{R}}} + \left| {l_{1} } \right|\left( {x_{1}^{{\text{R}}} } \right)^{2} x_{2}^{{\text{R}}} x_{3}^{{\text{R}}} + \left| {l_{2} } \right|x_{1}^{{\text{R}}} \left( {x_{2}^{{\text{R}}} } \right)^{2} x_{3}^{{\text{R}}} + \left| {l_{3} } \right|x_{1}^{{\text{R}}} x_{2}^{{\text{R}}} \left( {x_{3}^{{\text{R}}} } \right)^{2} } \right] \\ \end{aligned}$$
(45)

From Eq. (45), it can be seen that \(R_{3}^{{\text{L}}}\) and \(R_{3}^{{\text{U}}}\) represent the maximum errors of the lower and upper bounds, respectively.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, F., Zhao, H., Wei, T. et al. A subinterval bivariate dimension-reduction method for nonlinear problems with uncertainty parameters. Meccanica 57, 2231–2251 (2022). https://doi.org/10.1007/s11012-022-01570-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-022-01570-0

Keywords

Navigation