Skip to main content
Log in

Dynamics analysis, offline–online tuning and identification of base inertia parameters for the 3-DOF Delta parallel robot under insufficient excitations

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

In this paper, the dynamics model of the 3-Degrees-Of-Freedom (DOF) Delta parallel manipulator is elaborated by means of a Screw-based formulation of the virtual works method in a linear regression form. Moreover, a reduced dynamics model is obtained by exploiting the singular value decomposition, leading to the determination of the base inertial parameters. This method is an offline tuning approach for which an optimized path containing several harmonics is required to establish the desired bandwidth. Additionally, this paper presents an algorithm to address the singularity problem by mapping the regressors to an orthogonal space and obtaining an optimal set of base parameters in an online manner, namely the online base inertial parameter tuning method. Thereafter, through a set of simulations, the effectiveness of the proposed method has been illustrated for different paths. Finally, a change in the value of an inertial parameter of the system, which can be regarded as a disturbance, is exerted and the obtained results reveal that the proposed method can compensate for extrinsic mass effect. In summary, it can be deduced that the the proposed approach is also able to identify the changed model under insufficient excitations for real-time purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Abeywardena S, Chen C (2017) Inverse dynamic modelling of a three-legged six-degree-of-freedom parallel mechanism. Multibody Syst Dyn 41(1):1–24

    Article  MathSciNet  MATH  Google Scholar 

  2. Abo-Shanab RF (2019) Dynamic modeling of parallel manipulators based on Lagrange–d’Alembert formulation and Jacobian/Hessian matrices. Multibody Syst Dyn 48:403–426

    Article  MathSciNet  MATH  Google Scholar 

  3. Angeles J (2002) Fundamentals of robotic mechanical systems. Springer, Berlin

    MATH  Google Scholar 

  4. Ansari-Rad S, Jahandari S, Kalhor A, Araabi BN (2018) Identification and control of mimo linear systems under sufficient and insufficient excitation. In: 2018 Annual American Control Conference (ACC). IEEE, pp 1108–1113

  5. Ansari-Rad S, Kalhor A, Araabi BN (2019) Partial identification and control of mimo systems via switching linear reduced-order models under weak stimulations. Evol Syst 10(2):111–128

    Article  Google Scholar 

  6. Argha A, Ye L, Cao K, Su SW, Celler BG (2017) Real-time identification of heart rate responses via auxiliary-model-based damped RLS scheme. In: 2017 39th annual international conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE, pp 1312–1315

  7. Arian A, Danaei B, Masouleh MT, Kalhor A (2017) Dynamic modeling and base inertial parameters determination of 3-DOF planar parallel manipulator. In: 2017 5th RSI International Conference on Robotics and Mechatronics (ICRoM). IEEE, pp 546–551

  8. Asgari M, Ardestani MA (2015) Dynamics and improved computed torque control of a novel medical parallel manipulator: applied to chest compressions to assist in cardiopulmonary resuscitation. J Mech Med Biol 15(04):1550051

    Article  Google Scholar 

  9. Åström KJ, Wittenmark B (2013) Adaptive control. Courier Corporation, Chelmsford

    MATH  Google Scholar 

  10. Azad FA, Rahimi S, Yazdi MRH, Masouleh MT (2020) Design and evaluation of adaptive and sliding mode control for a 3-DOF delta parallel robot. In: 2020 28th Iranian Conference on Electrical Engineering (ICEE). IEEE, pp 1–7

  11. Azad FA, Yazdi MRH, Masouleh MT (2019) Kinematic and dynamic analysis of 3-DOF delta parallel robot based on the screw theory and principle of virtual work. In: 2019 5th conference on Knowledge Based Engineering and Innovation (KBEI). IEEE, pp 717–724

  12. Baran EA, Ozen O, Bilgili D, Sabanovic A (2019) Unified kinematics of prismatically actuated parallel delta robots. Robotica 37:1513–1532

    Article  Google Scholar 

  13. Barreto JP, Corves B (2019) Resonant delta robot for pick-and-place operations. In: IFToMM World Congress on Mechanism and Machine Science. Springer, pp 2309–2318

  14. Brinker J, Corves B, Takeda Y (2018) Kinematic performance evaluation of high-speed delta parallel robots based on motion/force transmission indices. Mech Mach Theory 125:111–125

    Article  Google Scholar 

  15. Cao W, Yang D, Ding H (2018) A method for stiffness analysis of overconstrained parallel robotic mechanisms with Scara motion. Robot Comput Integr Manuf 49:426–435

    Article  Google Scholar 

  16. Chen CT, Liao TT (2016) Trajectory planning of parallel kinematic manipulators for the maximum dynamic load-carrying capacity. Meccanica 51(8):1653–1674

    Article  MathSciNet  MATH  Google Scholar 

  17. Cheng G, Shan X (2012) Dynamics analysis of a parallel hip joint simulator with four degree of freedoms (3r1t). Nonlinear Dyn 70(4):2475–2486

    Article  MathSciNet  Google Scholar 

  18. Clavel R (1988) Delta, a fast robot with parallel geometry, vol 26–28

  19. Clavel R (1990) Device for the movement and positioning of an element in space

  20. Codourey A (1998) Dynamic modeling of parallel robots for computed-torque control implementation. Int J Robot Res 17(12):1325–1336

    Article  Google Scholar 

  21. Codourey A, Burdet E (1997) A body-oriented method for finding a linear form of the dynamic equation of fully parallel robots. In: Proceedings of international conference on robotics and automation, vol 2. IEEE, pp 1612–1618

  22. Codourey A, Clavel R, Burckhardt C (1992) Control algorithm and controller for the direct drive delta robot. In: Robot control 1991. Elsevier, pp 543–549

  23. Danaei B, Arian A, Masouleh MT, Kalhor A (2017) Dynamic modeling and base inertial parameters determination of a 2-DOF spherical parallel mechanism. Multibody Syst Dyn 41(4):367–390

    Article  MathSciNet  MATH  Google Scholar 

  24. Dastjerdi AH, Sheikhi MM, Masouleh MT (2020) A complete analytical solution for the dimensional synthesis of 3-DOF delta parallel robot for a prescribed workspace. Mech Mach Theory 153:103991

    Article  Google Scholar 

  25. Deng X, Yin L, Peng S, Ding M (2015) An iterative algorithm for solving ill-conditioned linear least squares problems. Geodesy Geodyn 6(6):453–459

    Article  Google Scholar 

  26. Diaz-Rodriguez M, Valera A, Mata V, Valles M (2012) Model-based control of a 3-DOF parallel robot based on identified relevant parameters. IEEE/ASME Trans Mechatron 18(6):1737–1744

    Article  Google Scholar 

  27. Ebrahimi S, Kövecses J (2010) Unit homogenization for estimation of inertial parameters of multibody mechanical systems. Mech Mach Theory 45(3):438–453

    Article  MATH  Google Scholar 

  28. Eksioglu EM, Tanc AK (2011) RLS algorithm with convex regularization. IEEE Signal Process Lett 18(8):470–473

    Article  Google Scholar 

  29. Eldén L (1984) An efficient algorithm for the regularization of ill-conditioned least squares problems with triangular Toeplitz matrix. SIAM J Sci Stat Comput 5(1):229–236

    Article  MathSciNet  MATH  Google Scholar 

  30. Enferadi J, Tootoonchi AA (2010) Inverse dynamics analysis of a general spherical star-triangle parallel manipulator using principle of virtual work. Nonlinear Dyn 61(3):419–434

    Article  MATH  Google Scholar 

  31. Evestedt M, Medvedev A (2006) Stationary behavior of an anti-windup scheme for recursive parameter estimation under lack of excitation. Automatica 42(1):151–157

    Article  MathSciNet  MATH  Google Scholar 

  32. Gallardo-Alvarado J (2020) A Gough-Stewart parallel manipulator with configurable platform and multiple end-effectors. Meccanica 55(3):597–613

    Article  MathSciNet  Google Scholar 

  33. Gallardo-Alvarado J, Aguilar-Nájera C, Casique-Rosas L, Pérez-González L, Rico-Martínez J (2008) Solving the kinematics and dynamics of a modular spatial hyper-redundant manipulator by means of screw theory. Multibody Syst Dyn 20(4):307–325

    Article  MathSciNet  MATH  Google Scholar 

  34. Gallardo-Alvarado J, Balmaceda-Santamaría AL, Castillo-Castaneda E (2014) An application of screw theory to the kinematic analysis of a delta-type robot. J Mech Sci Technol 28(9):3785–3792

    Article  Google Scholar 

  35. Ghaedrahmati R, Raoofian A, Kamali A, Taghvaeipour A (2019) An enhanced inverse dynamic and joint force analysis of multibody systems using constraint matrices. Multibody Syst Dyn 46(4):329–353

    Article  MathSciNet  MATH  Google Scholar 

  36. Gharahsofloo A, Rahmani A (2015) An efficient algorithm for workspace generation of delta robot

  37. Gherman B, Pisla D, Vaida C, Plitea N (2012) Development of inverse dynamic model for a surgical hybrid parallel robot with equivalent lumped masses. Robot Comput Integr Manuf 28(3):402–415

    Article  Google Scholar 

  38. Goldenberg AA, He X, Ananthanarayanan S (1992) Identification of inertial parameters of a manipulator with closed kinematic chains. IEEE Trans Syst Man Cybern 22(4):799–805

    Article  Google Scholar 

  39. Grotjahn M, Heimann B, Abdellatif H (2004) Identification of friction and rigid-body dynamics of parallel kinematic structures for model-based control. Multibody Syst Dyn 11(3):273–294

    Article  MathSciNet  MATH  Google Scholar 

  40. Ha QP, Rye DC, Durrant-Whyte HF (1999) Fuzzy moving sliding mode control with application to robotic manipulators. Automatica 35(4):607–616

    Article  MATH  Google Scholar 

  41. Hong J, Yamamoto M (2009) A calculation method of the reaction force and moment for a delta-type parallel link robot fixed with a frame. Robotica 27(4):579–587

    Article  Google Scholar 

  42. Hui J, Pan M, Zhao R, Luo L, Wu L (2018) The closed-form motion equation of redundant actuation parallel robot with joint friction: an application of the Udwadia-Kalaba approach. Nonlinear Dyn 93(2):689–703

    Article  MATH  Google Scholar 

  43. Iriarte X, Ros J, Mata V, Aginaga J (2017) Determination of the symbolic base inertial parameters of planar mechanisms. Eur J Mech A Solids 61:82–91

    Article  MathSciNet  MATH  Google Scholar 

  44. Kalani H, Rezaei A, Akbarzadeh A (2016) Improved general solution for the dynamic modeling of Gough-Stewart platform based on principle of virtual work. Nonlinear Dyn 83(4):2393–2418

    Article  MathSciNet  MATH  Google Scholar 

  45. Karbasizadeh N, Zarei M, Aflakian A, Masouleh MT, Kalhor A (2018) Experimental dynamic identification and model feed-forward control of Novint Falcon haptic device. Mechatronics 51:19–30

    Article  Google Scholar 

  46. Kelaiaia R (2017) Improving the pose accuracy of the delta robot in machining operations. Int J Adv Manuf Technol 91(5–8):2205–2215

    Article  Google Scholar 

  47. Kelley C, Ipsen I, Pope S (2010) Rank-deficient and ill-conditioned nonlinear least squares problems. In: Proceedings of 2010 East Asian SIAM Conf

  48. Khalifa A, Fanni M, Mohamed AM (2017) Geometrical/analytical approach for reciprocal screw-based singularity analysis of a novel dexterous minimally invasive manipulator. Robot Auton Syst 98:56–66

    Article  Google Scholar 

  49. Khalil W, Bennis F (1995) Symbolic calculation of the base inertial parameters of closed-loop robots. Int J Robot Res 14(2):112–128

    Article  Google Scholar 

  50. Khalil W, Kleinfinger JF (1987) Minimum operations and minimum parameters of the dynamic models of tree structure robots. IEEE J Robot Autom 3(6):517–526

    Article  Google Scholar 

  51. Khosla PK (1986) Real-time control and identification of direct-drive manipulators (robotics)

  52. Kubin G (1988) Stabilization of the RLS algorithm in the absence of persistent excitation. In: 1988 International Conference on Acoustics, Speech, and Signal Processing, 1988. ICASSP-88. IEEE, pp 1369–1372

  53. Kumar KK, Srinath A, Siddhartha B, Subhash LV (2015) Simulation and analysis of parallel manipulator for manoeuvring laparoscopic camera-CAD based approach. Int J Eng Technol 7(1):294–302

    Google Scholar 

  54. Lambert E (1987) Process control applications of long-range prediction. Ph.D. thesis, University of Oxford

  55. Lara-Molina FA, Dumur D (2021) Robust multi-objective optimization of parallel manipulators. Meccanica 56:2843–2860

    Article  MathSciNet  Google Scholar 

  56. Laski PA, Takosoglu JE, Blasiak S (2015) Design of a 3-DOF tripod electro-pneumatic parallel manipulator. Robot Auton Syst 72:59–70

    Article  Google Scholar 

  57. Li Y, Xu Q (2005) Dynamic analysis of a modified delta parallel robot for cardiopulmonary resuscitation. In: 2005 IEEE/RSJ international conference on intelligent robots and systems. IEEE, pp 233–238

  58. Liu XJ, Wang J, Oh KK, Kim J (2004) A new approach to the design of a delta robot with a desired workspace. J Intell Robot Syst 39(2):209–225

    Article  Google Scholar 

  59. Liu Y, Liang B, Xu W, Wang X (2019) A method for measuring the inertia properties of a rigid body using 3-URU parallel mechanism. Mech Syst Signal Process 123:174–191

    Article  Google Scholar 

  60. Lu XG, Liu M, Liu JX (2017) Design and optimization of interval type-2 fuzzy logic controller for delta parallel robot trajectory control. Int J Fuzzy Syst 19(1):190–206

    Article  Google Scholar 

  61. Merlet J (2012) Parallel robots, vol 74. Springer, Berlin

    MATH  Google Scholar 

  62. Mo J, Shao ZF, Guan L, Xie F, Tang X (2017) Dynamic performance analysis of the x4 high-speed pick-and-place parallel robot. Robot Comput Integr Manuf 46:48–57

    Article  Google Scholar 

  63. Mokled E, Chartouni G, Kassis C, Rizk R (2019) Parallel robot integration and synchronization in a waste sorting system. In: Mechanism, machine, robotics and mechatronics sciences. Springer, pp 171–187

  64. Müller A (2022) Dynamics of parallel manipulators with hybrid complex limbs—-modular modeling and parallel computing. Mech Mach Theory 167:104549

    Article  Google Scholar 

  65. Nguyen VS, Im N (2014) Development of computer program for solving astronomical ship position based on circle of equal altitude equation and svd-least square algorithm. J Navig Port Res 38(2):89–96

    Article  Google Scholar 

  66. Olsson A (2009) Modeling and control of a delta-3 robot. MSc Theses

  67. Padilla A (2017) Recursive identification of continuous-time systems with time-varying parameters. Ph.D. thesis, Université de Lorraine

  68. Rad SA, Tamizi MG, Azmoun M, Masouleh MT, Kalhor A (2020) Experimental study on robust adaptive control with insufficient excitation of a 3-DOF spherical parallel robot for stabilization purposes. Mech Mach Theory 153:104026

    Article  Google Scholar 

  69. Rad SA, Tamizi MG, Mirfakhar A, Masouleh MT, Kalhor A (2021) Control of a two-DOF parallel robot with unknown parameters using a novel robust adaptive approach. ISA Trans

  70. Rao Sripada N, Grant Fisher D (1987) Improved least squares identification. Int J Control 46(6):1889–1913

    Article  MathSciNet  MATH  Google Scholar 

  71. Rong Q, Shi J, Ceglarek D (2001) Adjusted least squares approach for diagnosis of ill-conditioned compliant assemblies. J Manuf Sci Eng 123(3):453–461

    Article  Google Scholar 

  72. Ros J, Iriarte X, Mata V (2012) 3d inertia transfer concept and symbolic determination of the base inertial parameters. Mech Mach Theory 49:284–297

    Article  Google Scholar 

  73. Ros J, Plaza A, Iriarte X, Aginaga J (2015) Inertia transfer concept based general method for the determination of the base inertial parameters. Multibody Syst Dyn 34(4):327–347

    Article  MathSciNet  MATH  Google Scholar 

  74. Ruiz-Hidalgo N, Blanco Ortega A, Abúndez Pliego A, Colin-Ocampo J, Alcocer Rosado W (2019) Dynamic analysis and control of a three-revolute-prismatic-spherical parallel robot by algebraic parameters identification. Int J Adv Robot Syst 16(3):1729881419841533

    Article  Google Scholar 

  75. Saafi H, Laribi MA, Zeghloul S (2017) Optimal torque distribution for a redundant 3-RRR spherical parallel manipulator used as a haptic medical device. Robot Auton Syst 89:40–50

    Article  Google Scholar 

  76. Sadikovic R, Korba P, Andersson G (2006) Self-tuning controller for damping of power system oscillations with facts devices. In: Power Engineering Society General Meeting, 2006. IEEE, p 6

  77. Shah SL, Cluett WR (1991) Recursive least squares based estimation schemes for self-tuning control. Can J Chem Eng 69(1):89–96

    Article  Google Scholar 

  78. Sharifzadeh M, Arian A, Salimi A, Masouleh MT, Kalhor A (2017) An experimental study on the direct & indirect dynamic identification of an over-constrained 3-DOF decoupled parallel mechanism. Mech Mach Theory 116:178–202

    Article  Google Scholar 

  79. Sharifzadeh M, Masouleh MT, Kalhor A (2017) On human-robot interaction of a 3-DOF decoupled parallel mechanism based on the design and construction of a novel and low-cost 3-DOF force sensor. Meccanica 52(10):2471–2489

    Article  MATH  Google Scholar 

  80. Sharifzadeh M, Masouleh MT, Kalhor A, Shahverdi P (2018) An experimental dynamic identification & control of an overconstrained 3-DOF parallel mechanism in presence of variable friction and feedback delay. Robot Auton Syst 102:27–43

    Article  Google Scholar 

  81. Shen H, Meng Q, Li J, Deng J, Wu G (2021) Kinematic sensitivity, parameter identification and calibration of a non-fully symmetric parallel delta robot. Mech Mach Theory 161:104311

    Article  Google Scholar 

  82. Shome SS, Beale DG, Wang D (1998) A general method for estimating dynamic parameters of spatial mechanisms. Nonlinear Dyn 16(4):349–368

    Article  MATH  Google Scholar 

  83. Stenlund B, Gustafsson F (2002) Avoiding windup in recursive parameter estimation. Preprints of reglermöte 2002, pp 148–153

  84. Stewart D (1965) A platform with six degrees of freedom. Proc Inst Mech Eng 180(1):371–386

    Article  Google Scholar 

  85. Swevers J, Ganseman C, De Schutter J, Van Brussel H (1996) Experimental robot identification using optimised periodic trajectories. Mech Syst Signal Process 10(5):561–577

    Article  Google Scholar 

  86. Thirumalai S, Gallivan K, Van Dooren P. Algorithms for rank-deficient and ill-conditioned Toeplitz least-squares and QR factorization

  87. Tho TP, Thinh NT (2014) Analysis of kinematics and dynamics of 4-DOF delta parallel robot. In: Robot intelligence technology and applications, vol 2. Springer, pp 901–910

  88. Tsai LW (1999) Robot analysis: the mechanics of serial and parallel manipulators. Wiley, Hoboken

    Google Scholar 

  89. Tu Y, Wernsdorfer A, Honda S, Tomita Y (1997) Estimation of conduction velocity distribution by regularized-least-squares method. IEEE Trans Biomed Eng 44(11):1102–1106

    Article  Google Scholar 

  90. Vieira HL, Beck AT, da Silva MM (2021) Combined interval analysis-Monte Carlo simulation approach for the analysis of uncertainties in parallel manipulators. Meccanica 1–15

  91. Wang D, Wang L, Wu J (2021) Physics-based mechatronics modeling and application of an industrial-grade parallel tool head. Mech Syst Signal Process 148:107158

    Article  Google Scholar 

  92. Wen S, Qin G, Zhang B, Lam HK, Zhao Y, Wang H (2016) The study of model predictive control algorithm based on the force/position control scheme of the 5-DOF redundant actuation parallel robot. Robot Auton Syst 79:12–25

    Article  Google Scholar 

  93. Xu P, Li B, Chueng CF (2017) Dynamic analysis of a linear delta robot in hybrid polishing machine based on the principle of virtual work. In: 2017 18th International Conference on Advanced Robotics (ICAR). IEEE, pp 379–384

  94. Yaacoub F, Abche A, Karam E, Hamam Y (2008) MRI reconstruction using SVD in the least square sense. In: 21st IEEE international symposium on Computer-Based Medical Systems, 2008. CBMS’08. IEEE, pp 47–49

  95. Yan Y, Cai Y (2006) Precision PEP-II optics measurement with an SVD-enhanced least-square fitting. Nucl Instrum Methods Phys Res Sect A 558(1):336–339

    Article  Google Scholar 

  96. Yang C, Han J, Zheng S, Peter OO (2012) Dynamic modeling and computational efficiency analysis for a spatial 6-DOF parallel motion system. Nonlinear Dyn 67(2):1007–1022

    Article  MathSciNet  Google Scholar 

  97. Yoo CK, Sung SW, Lee IB (2003) Generalized damped least squares algorithm. Comput Chem Eng 27(3):423–431

    Article  Google Scholar 

  98. Zengqiang C, Maoqiong L, Zhuzhi Y (2000) Convergence and stability of recursive damped least square algorithm. Appl Math Mech 21(2):237–242

    Article  MathSciNet  MATH  Google Scholar 

  99. Zhao Y (2013) Dynamic optimum design of a three translational degrees of freedom parallel robot while considering anisotropic property. Robot Comput Integr Manuf 29(4):100–112

    Article  Google Scholar 

  100. Zolghadrit A, Cieslakt J, Goupil P, Dayre R (2017) Turning theory to practice in model-based FDI: successful application to new generation airbus aircraft. IFAC-PapersOnLine 50(1):12773–12778

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehdi Tale Masouleh.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest, neither financial nor non-financial, relevant to the contents of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

1.1 Wrenches of Inertia with respect to the link coordinate frames

Inertial wrenches of a body, defined in Eq. (36), have been determined in Eq. (37) w.r.t. the center of gravity of the corresponding link. However, from the theory of second order infinitesimal rotations, one can write acceleration of the center of mass of each link relative to another point on the corresponding link. Furthermore, from Euler’s rotation equation of motion, it can be written relative to an arbitrary point on the rigid body. Therefore, taking these concepts into account, Eq. (37) would be:

$$\begin{aligned} {\mathscr {F}}_{G_{i}}^{\mathrm {inertia}} = \left[ \begin{array}{c}{m \left( \dot{\mathbf {v}}_{i}+\pmb {\omega }_{i} \times \left( \pmb {\omega }_{i} \times \mathbf {r}_{i}\right) +\dot{\pmb {\omega }}_{i} \times \mathbf {r}_{i}\right) } \\ {\mathbf {I}_{\mathrm {G}_{i}} \dot{\pmb {\omega }}_{i}+\pmb {\omega }_{i} \times \mathbf {I}_{\mathrm {G}_{i}} \pmb {\omega }_{i}+m \left( \mathbf {r}_{i} \times \dot{\mathbf {v}}_{\mathrm {G}_{i}}\right) }\end{array}\right] . \end{aligned}$$
(88)

As it is can be observed from the above, the two equations constitute the wrenches of inertia; first one as Newton’s second law of motion and the second one as Euler’s rotation equation; both defined w.r.t. an arbitrary location, namely, center of the links’ coordinate frames. However, the second equation contains some terms regarding the center of mass which should be eliminated. Thus, the inertial tensor of each link has been written w.r.t. the center of its own link coordinate frame:

$$\begin{aligned} \mathbf {I}_{i}=\mathbf {I}_{G_{i}}+m_{i} \left[ \left( \mathbf {r}_{i}^{\mathrm {T}} \times \mathbf {r}_{i}\right) \mathbf {1}_{3 \times 3}-\left( \mathbf {r}_{i} \times \mathbf {r}_{i}^{\mathrm {T}}\right) \right] . \end{aligned}$$
(89)

Substitution of Eq. (89) into second equation of Eq. (88) leads to:

$$\begin{aligned}&\mathbf {I}_{\mathrm {G}_{i}} \dot{\pmb {\omega }}_{i} = \left( \mathbf {I}_{i}-m_{i}\left[ \left( \mathbf {r}_{i}^{\mathrm {T}} \times \mathbf {r}_{i}\right) \mathbf {1}_{3 \times 3}-\left( \mathbf {r}_{i} \times \mathbf {r}_{i}^{\mathrm {T}}\right) \right] \right) \dot{\pmb {\omega }_{l}} \end{aligned}$$
(90)
$$\begin{aligned}&\pmb {\omega }_{i} \times I_{G_{i}} \pmb {\omega }_{i}=\pmb {\omega }_{i} \times \left( I_{i}-m_{i}\left[ \left( \mathbf {r}_{i}^{\mathrm {T}} \times \mathbf {r}_{i}\right) \mathbf {1}_{3 \times 3}\right. \right. \nonumber \\&\left. \left. \quad -\left( \mathbf {r}_{i} \times \mathbf {r}_{i}^{T}\right) \right] \right) \pmb {\omega }_{i} \end{aligned}$$
(91)
$$\begin{aligned}&\mathbf {r}_{i} \times \dot{\mathbf {v}}_{\mathrm {G}_{i}}=\mathbf {r}_{i} \times \left( \dot{\mathbf {v}}_{i}+\pmb {\omega }_{i} \times \left( \pmb {\omega }_{i} \times \mathbf {r}_{i}\right) +\dot{\pmb {\omega }}_{i} \times \mathbf {r}_{i}\right) \end{aligned}$$
(92)

Moreover, from linear algebra one has:

$$\begin{aligned}&\pmb {a} \times (\pmb {B} \times \pmb {a})=\left( \pmb {a}^{\mathrm {T}} \pmb {a} \; \mathbf {1}_{3 \times 3}-\pmb {a} \; \pmb {a}^{\mathrm {T}}\right) \pmb {B} \end{aligned}$$
(93)
$$\begin{aligned}&\pmb {a} \times (\pmb {B} \times (\pmb {B} \times \pmb {a}))=\pmb {B} \times \left( \pmb {a}^{\mathrm {T}} \pmb {a} \; \mathbf {1}_{3 \times 3}-\pmb {a}\;\pmb {a}^{\mathrm {T}}\right) \pmb {B} \end{aligned}$$
(94)

where \(\pmb {a}\) is an arbitrary 3-by-1 vector, and \(\pmb {B}\) denotes a 3-by-3 arbitrary matrix.

Substitution of Eqs. (90) to (92) into Eq. (88) and Considering Eqs. (93) and (94), the analogues terms with opposite sign appear in Eq. (88) that by eliminating them one can rewrite Eq. (37) as follows:

$$\begin{aligned} {\mathscr {F}}_{i}^{ \text{ inertia } }=\left[ \begin{array}{c}{m \left( \dot{\mathbf {v}}_{i}+\pmb {\omega }_{i} \times \left( \pmb {\omega }_{i} \times \mathbf {r}_{i}\right) +\dot{\pmb {\omega }}_{i} \times \mathbf {r}_{i}\right) } \\ {\mathbf {I}_{i} \dot{\pmb {\omega }}_{i}+\pmb {\omega }_{i} \times \mathbf {I}_{i} \pmb {\omega }_{i}+m \left( \mathbf {r}_{i} \times \dot{\mathbf {v}}_{i}\right) }\end{array}\right] . \end{aligned}$$
(95)

In this equation, the terms regarding the center of gravity have been eliminated and it is more convenient to use it in the identification process.

1.2 Screw rotation matrices used in this paper

In this Appendix the rotation matrices used in this paper have been illustrated. As discussed in Sect. 3.3, there are three types of coordinate frames, namely, the limb coordinate frames, actuated links’ coordinate frames, and parallelogram links’ coordinate frames. In what follows, the rotation matrices associated with these coordinate frames have been elaborated, afterwards, the Screw rotation matrices have been defined. The coordinate rotation matrices are as follows:

$$\begin{aligned}&{}^B\mathbf {R}_{0i}^{\text {crd}}(\psi )=\left[ \begin{array}{ccc} \cos {\psi } &{} \sin {\psi } &{} 0 \\ -\sin {\psi } &{} \cos {\psi } &{} 0 \\ 0 &{} 0 &{} 1 \end{array}\right] \end{aligned}$$
(96)
$$\begin{aligned}&{}^0\mathbf {R}_{1i}^{\text {crd}}(\theta _{1i})=\left[ \begin{array}{ccc} \cos {\theta _{1i}} &{} 0 &{} -\sin {\theta _{1i}} \\ 0 &{} 1 &{} 0 \\ \sin {\theta _{1i}} &{} 0 &{} \cos {\theta _{1i}} \end{array}\right] \end{aligned}$$
(97)
$$\begin{aligned}&{}^0\mathbf {R}_{2i}^{\text {crd}}(\theta _{2i},\phi _i)= \left[ \begin{array}{ccc} \cos {\phi } &{} \sin {\phi } &{} 0 \\ -\sin {\phi } &{} \cos {\phi } &{} 0 \\ 0 &{} 0 &{} 1 \end{array}\right] \left[ \begin{array}{ccc} \cos {\theta _{2i}} &{} 0 &{} -\sin {\theta _{2i}} \\ 0 &{} 1 &{} 0 \\ \sin {\theta _{2i}} &{} 0 &{} \cos {\theta _{2i}} \end{array}\right] \end{aligned}$$
(98)

According to the coordinate rotation matrices, the Screw rotation matrices have been derived as:

$$\begin{aligned}&{}^B\mathbf {R}_{0i}=\left[ \begin{array}{cc} ^0\mathbf {R}_{1i}^{\text {crd}} &{} \mathbf {0}_{3 \times 3} \\ \mathbf {0}_{3 \times 3} &{} ^0\mathbf {R}_{1i}^{\text {crd}} \end{array}\right] \end{aligned}$$
(99)
$$\begin{aligned}&{}^0\mathbf {R}_{1i}=\left[ \begin{array}{cc} ^0\mathbf {R}_{1i}^{\text {crd}} &{} \mathbf {0}_{3 \times 3} \\ \mathbf {0}_{3 \times 3} &{} ^0\mathbf {R}_{1i}^{\text {crd}} \end{array}\right] \end{aligned}$$
(100)
$$\begin{aligned}&{}^0\mathbf {R}_{2i}= \left[ \begin{array}{cc} ^0\mathbf {R}_{2i}^{\text {crd}} &{} \mathbf {0}_{3 \times 3} \\ \mathbf {0}_{3 \times 3} &{} ^0\mathbf {R}_{2i}^{\text {crd}} \end{array}\right] \end{aligned}$$
(101)

1.3 Statistical Properties of SVD-DLS

In this section, the statistical properties of the proposed SVD-DLS method and classic LS are compared. To the end of investigating the effects of noise, the system output, \(\pmb {\tau }_t\), is assumed to be contaminated with additive zero-mean white noise vector, \(\mathbf {\eta }_t\), with variance \(\mathbf {\sigma }\). The noise vector, denoted with \(\mathbf {N}_t\), contains kt independent and identically distributed (iid) random variables. Therefore, the outputs of system can be modeled by:

$$\begin{aligned} {{\pmb {\tau }}_{t}}={\bar{\pmb {\tau }}_{t}}+{{\mathbf {\eta } }_{t}}= \mathbf {D} _{t}^{\mathrm {T}}{{\mathbf {P}}_{t}}+{{\mathbf {\eta } }_{t}} \end{aligned}$$
(102)

where \({\bar{\pmb {\tau }}_{t}}\) denotes the deterministic part of the output. The non-recursive parameter estimation in LS method is calculated as follows:

$$\begin{aligned} {{\hat{\mathbf {P} }}_{t}} = {\left( {\mathbf {X}_{t}}^{\mathrm {T}} \mathbf {X}_{t} \right) }^{-1} {\mathbf {X}_{t}}^{\mathrm {T}} {\mathbf {Y}_{t}} \end{aligned}$$
(103)

where \(\mathbf {X}_{t}\in {\mathbb {R}}^{kt\times n}\) shows the augmented matrix of input regressors and is not affected by the additive noise. \({\mathbf {Y}_{t}\in {\mathbb {R}}^{kt}}\) denotes the augmented vector of output measurements. Using the deterministic part of the output (\({\bar{\mathbf {Y}}_{t}}\)), the estimation of deterministic parameter vector, \({{{\mathbf {P} }}_{t}}={\left( {\mathbf {X}_{t}}^{\mathrm {T}} \mathbf {X}_{t} \right) }^{-1} {\mathbf {X}_{t}}^{\mathrm {T}} {\bar{\mathbf {Y}}_{t}}\), is obtained which is equivalent with the noise-free estimation of parameters. Applying the proposed method leads to the following estimation for the deterministic part of parameters:

$$\begin{aligned} \begin{aligned}&\hat{\mathbf {P}}^{\beta }_t = \underbrace{ {\left( \mathbf {V}_{t}^ \text {p} \pmb {\Lambda } _{t}^ \text {p} \mathbf {V}_{t}^{{ \text {p}^{\mathrm {T}}}} \right) }^{-1} {\mathbf {X}_{t}}^{\mathrm {T}} {\bar{\mathbf {Y}}_{t}} + \mathbf {V}_{\text {nul}} {\pmb {\beta }} } _ {{\mathbf {P}}^{\beta }_t} \\&\quad + {\left( \mathbf {V}_{t}^ \text {p} \pmb {\Lambda } _{t}^ \text {p} \mathbf {V}_{t}^{{ \text {p}^{\mathrm {T}}}} \right) }^{-1} {\mathbf {X}_{t}}^{\mathrm {T}} {{\mathbf {N}}_{t}} \end{aligned} \end{aligned}$$
(104)

The expected value of \(\hat{\mathbf {P}}^{\beta }_t\) could be calculated as follows:

$$\begin{aligned} \text {E}\{ \hat{\mathbf {P}}^{\beta }_t |{\mathbf {X}_{t}} \} = {\mathbf {P}}^{\beta }_t + \text {E}\{ {\left( \mathbf {V}_{t}^ \text {p} \pmb {\Lambda } _{t}^ \text {p} \mathbf {V}_{t}^{{ \text {p}^{\mathrm {T}}}} \right) }^{-1} {\mathbf {X}_{t}}^{\mathrm {T}} {{\mathbf {N}}_{t}} \} = {\mathbf {P}}^{\beta }_t \end{aligned}$$
(105)

Since the noise is assumed to be zero-mean and iid, SVD-DLS leads to an unbiased estimation for any \({\pmb {\beta }}\). Thereafter, computing the covariance matrix of the estimated vector leads to:

$$\begin{aligned} \begin{aligned}&\text {cov}\{ \hat{\mathbf {P}}^{\beta }_t |{\mathbf {X}_{t}} \} = {\left( \mathbf {V}_{t}^ \text {p} \pmb {\Lambda } _{t}^ \text {p} \mathbf {V}_{t}^{{ \text {p}^{\mathrm {T}}}} \right) }^{-1} {\mathbf {X}_{t}}^{\mathrm {T}} \text {E}\{ {{\mathbf {N}}_{t}} {{\mathbf {N}}_{t}}^{\mathrm {T}} \} \\&{\mathbf {X}_{t}} {\left( \mathbf {V}_{t}^ \text {p} \pmb {\Lambda } _{t}^ \text {p} \mathbf {V}_{t}^{{ \text {p}^{\mathrm {T}}}} \right) }^{-1} = \mathbf {\sigma } {\left( \mathbf {V}_{t}^ \text {p} \pmb {\Lambda } _{t}^ \text {p} \mathbf {V}_{t}^{{ \text {p}^{\mathrm {T}}}} \right) }^{-1}. \end{aligned} \end{aligned}$$
(106)

It follows from Eq. (66) that \({\mathbf {R}_{t}}= \mathbf {V}_{t}^ \text {p} \pmb {\Lambda } _{t}^ \text {p} \mathbf {V}_{t}^{{ \text {p}^{\mathrm {T}}}}\). Therefore, when invasive measurements are available, the eigenvalues of inverse of \(\mathbf {V}_{t}^ \text {p}\) are decreased and as a result, SVD-DLS estimations remain consistent.

A similar procedure can be conducted to show that the covariance matrix of estimated parameters is equal to the Cramer-Rao lower bound. It follows that the proposed method is efficient when the additive noise is white Gaussian. Consequently, the SVD-DLS method has similar facets of the classic LS from the statistical point of view, and in addition, solves problems of estimation windup and insufficient excitations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abed Azad, F., Ansari Rad, S., Hairi Yazdi, M.R. et al. Dynamics analysis, offline–online tuning and identification of base inertia parameters for the 3-DOF Delta parallel robot under insufficient excitations. Meccanica 57, 473–506 (2022). https://doi.org/10.1007/s11012-021-01464-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-021-01464-7

Keywords

Navigation