Skip to main content
Log in

Frictional moving contact problem between a conducting rigid cylindrical punch and a functionally graded piezoelectric layered half plane

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

In this study, a frictional moving contact problem between an electrically conducting rigid cylindrical punch and a functionally graded piezoelectric material (FGPM) layer bonded to a piezoelectric homogeneous half plane is considered. The punch moves on the layer in the lateral direction at a subsonic constant velocity V and transmits the normal and the tangential loads. The mechanical and the electrical material properties of the layer are assumed to vary exponentially along the thickness direction. Using Fourier integral transform technique and Galilean transformation, the mixed boundary value problem is reduced to the singular integral equations in which the unknowns are the contact stress, the contact width, and the electric charge distribution. The singular integral equations are solved numerically applying the appropriate Gauss-Jacobi integration formulas. Numerical results for the contact width, the contact stress and the electric charge distribution are given as a solution. This work is the first study that investigates the moving contact problem of a graded piezoelectric materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Giannakopoulos AE, Suresh S (1999) Theory of indentation of piezoelectric materials. Acta Mater 47(7):2153–2164

    Article  Google Scholar 

  2. Wang BL, Han JC (2006) A circular indenter on a piezoelectric layer. Arch Appl Mech 76(7–8):367–379

    Article  Google Scholar 

  3. Giannakopoulos AE, Parmaklis AZ (2007) The contact problem of a circular rigid punch on piezomagnetic materials. Int J Solids Struct 44(14–15):4593–4612

    Article  Google Scholar 

  4. Ramirez G, Heyliger P (2003) Frictionless contact in a layered piezoelectric half-space. Smart Mater Struct 12(4):612

    Article  Google Scholar 

  5. Wang BBL, Han JC, Du SY, Zhang HY, Sun YG (2008) Electromechanical behaviour of a finite piezoelectric layer under a flat punch. Int J Solids Struct 45(25–26):6384–6398

    Article  Google Scholar 

  6. Zhou YT, Lee KY (2013) Frictional contact of anisotropic piezoelectric materials indented by flat and semi-parabolic stamps. Arch Appl Mech 83(1):73–95

    Article  Google Scholar 

  7. Ma J, Ke LL, Wang YS (2014) Electro-mechanical sliding frictional contact of a piezoelectric half-plane under a rigid conducting punch. Appl Math Model 38(23):5471–5489

    Article  MathSciNet  Google Scholar 

  8. Ma J, Ke LL, Wang YS (2014) Frictionless contact of a functionally graded magneto-electro-elastic layered half-plane under a conducting punch. Int J Solids Struct 51(15–16):2791–2806

    Article  Google Scholar 

  9. Elloumi R, Guler MA, Kallel-Kamoun I, El-Borgi S (2013) Closed-form solutions of the frictional sliding contact problem for a magneto-electro-elastic half-plane indented by a rigid conducting punch. Int J Solids Struct 50(24):3778–3792

    Article  Google Scholar 

  10. Elloumi R, Kallel-Kamoun I, El-Borgi S, Guler MA (2014) On the frictional sliding contact problem between a rigid circular conducting punch and a magneto-electro-elastic half-plane. Int J Mech Sci 87:1–17

    Article  Google Scholar 

  11. Ke LL, Wang YS, Yang J, Kitipornchai S (2010) Sliding frictional contact analysis of functionally graded piezoelectric layered half-plane. Acta Mech 209(3–4):249–268

    Article  Google Scholar 

  12. Su J, Ke LL, El-Borgi S, Xiang Y, Wang YS (2018) An effective method for the sliding frictional contact of a conducting cylindrical punch on FGPMs. Int J Solids Struct 141:127–136

    Article  Google Scholar 

  13. Su J, Ke LL, Wang YS (2016) Axisymmetric frictionless contact of a functionally graded piezoelectric layered half-space under a conducting punch. Int J Solids Struct 90:45–59

    Article  Google Scholar 

  14. Galin LA (2008) Contact problems: the legacy of LA Galin. Springer Science & Business Media, Berlin

    MATH  Google Scholar 

  15. Çömez İ (2017) Frictional moving contact problem for a layer indented by a rigid cylindrical punch. Arch Appl Mech 87(12):1993–2002

    Article  Google Scholar 

  16. De J, Patra B (1994) Dynamic punch problems in an orthotropic elastic half-plane. Indian J Pure Appl Math 25:767–767

    MATH  Google Scholar 

  17. Zhou YT, Lee KY (2012) Exact solutions of a new, 2D frictionless contact model for orthotropic piezoelectric materials indented by a rigid sliding punch. Phil Mag 92(15):1937–1965

    Article  Google Scholar 

  18. Zhou, Y. T., Lee, K. Y. (2012c). Contact problem for magneto-electro-elastic half-plane materials indented by a moving punch. Part I: closed-form solutions. International Journal of Solids and Structures, 49(26): 3853–3865.

  19. Çömez İ (2015) Contact problem for a functionally graded layer indented by a moving punch. Int J Mech Sci 100:339–344

    Article  Google Scholar 

  20. Balci MN, Dag S (2019) Solution of the dynamic frictional contact problem between a functionally graded coating and a moving cylindrical punch. Int J Solids Struct 161:267–281

    Article  Google Scholar 

  21. Singh B, Rokne J, Dhaliwal R (2007) The study of dynamic behavior of functionally graded piezoelectric materials and an application to a contact problem. Q Appl Math 65(1):155–162

    Article  MathSciNet  Google Scholar 

  22. Çömez, İ. (2021). Frictional moving contact problem of a magneto-electro-elastic half plane. Mechanics of Materials, 154: 103704.

  23. Sneddon IN (1972) The use of integral transforms. McGraw-Hill, New York

    MATH  Google Scholar 

  24. Erdogan, F. (1978) Mixed boundary value problems in mechanics. In: Nemat-Nasser, S. (ed.) Mechanics Today, vol. 4. Pergamon Press, Oxford.

  25. Krenk S (1975) On the use of the interpolation polynomial for solutions of singular integral equations. Q Appl Math 32(4):479–484

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to İsa Çömez.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1

Expressions of \(L_{1j}\) and \(L_{2j}\) \((j = 1,2,...6)\) appearing in (10) and (16) are given as follows.

$$L_{11} = 3\gamma /\xi$$
(42)
$$\begin{aligned} L_{12} & = (e_{330} ((2c_{440} e_{310} + 2c_{130} (e_{150} + e_{310} ) - c_{110} e_{330} + e_{330} V^{2} \rho_{0} )\xi^{2} + 3c_{440} e_{330} \gamma^{2} ) \\ & \quad - c_{330} \xi^{2} ((e_{150} + e_{310} )^{2} + c_{440} \in_{110} ) + (c_{130}^{2} + 2c_{130} c_{440} + c_{440} V^{2} \rho_{0} )\xi^{2} \in_{330} \\ & \quad + c_{330} \xi^{2} ( - c_{110} \xi^{2} + V^{2} \rho_{0} \xi^{2} + 3c_{440} \gamma^{2} ) \in_{330} )/(c_{440} \xi^{2} (e_{330}^{2} + c_{330} \in_{330} )) \\ \end{aligned}$$
(43)
$$\begin{aligned} L_{13} & = (e_{330} (2(2c_{440} e_{310} + 2c_{130} (e_{150} + e_{310} ) - c_{110} e_{330} + e_{330} V^{2} \rho_{0} )\xi^{2} + 3c_{440} e_{330} \gamma^{2} ) \\ & \quad - 2c_{330} \xi^{2} ((e_{150} + e_{310} )^{2} + c_{440} \in_{110} ) + 2(c_{130}^{2} + 2c_{130} c_{440} + c_{440} V^{2} \rho_{0} )\xi^{2} \in_{330} \\ & \quad + c_{330} \xi^{2} ( - 2c_{110} \xi^{2} + 2V^{2} \rho_{0} \xi^{2} + c_{440} \gamma^{2} ) \in_{330} )/(c_{440} \xi^{2} (e_{330}^{2} + c_{330} \in_{330} )) \\ \end{aligned}$$
(44)
$$\begin{aligned} L_{14} & = - (\xi^{2} (c_{130}^{2} {\kern 1pt} \in_{110} {\kern 1pt} - c_{110} (2e_{150} e_{330} + c_{330} \in_{110} ) + 2c_{130} (e_{150} (e_{150} + e_{310} ) + c_{440} \in_{110} ) - c_{440} (c_{310}^{2} {\kern 1pt} + c_{110} \in_{330} )) \\ & \quad + V^{2} \rho_{0} \xi^{2} ((e_{150} + e_{310} )^{2} + 2e_{150} e_{330} + (c_{330} + c_{440} ) \in_{110} + {\kern 1pt} \,(c_{110} + c_{440} - V^{2} \rho_{0} ) \in_{330} ) \\ & \quad + \gamma^{2} ( - e_{330} (3c_{130} e_{150} + 2c_{130} e_{310} + 3c_{440} e_{310} - c_{110} e_{330} + e_{330} V^{2} \rho_{0} ) - (c_{130}^{2} + 3c_{130} c_{440} + c_{440} V^{2} \rho_{0} ) \in_{330} \\ & \quad + c_{330} (e_{150}^{2} + 3e_{150} e_{310} + e_{310}^{2} + c_{440} \in_{110} + c_{110} \in_{330} - V^{2} \rho_{0} \in_{330} ))/(c_{440} \xi^{2} (e_{330}^{2} + c_{330} \in_{330} )) \\ \end{aligned}$$
(45)
$$\begin{aligned} L_{15} & = - \gamma (\xi^{2} (c_{130}^{2} {\kern 1pt} \in_{110} {\kern 1pt} - c_{110} (2e_{150} e_{330} + c_{330} \in_{110} ) + 2c_{130} (e_{150} (e_{150} + e_{310} ) + c_{440} \in_{110} ) \\ & \quad - c_{440} (e_{310}^{2} + c_{110} \in_{330} )) + V^{2} \rho_{0} \xi^{2} (e_{150}^{2} + e_{310}^{2} + 2e_{150} (e_{310} + e_{330} ) + (c_{330} + c_{440} ) \in_{110} \\ & \quad + (c_{110} + c_{440} - V^{2} \rho_{0} ){\kern 1pt} \in_{330} ) + \gamma^{2} (c_{330} e_{310} e_{150} - c_{440} e_{310} e_{330} - c_{130} (e_{150} e_{330} + c_{440} \in_{330} )))/(c_{440} \xi^{2} (e_{330}^{2} + c_{330} \in_{330} )) \\ \end{aligned}$$
(46)
$$L_{16} = - c_{110} \xi^{2} (e_{150}^{2} {\kern 1pt} + c_{440} \in_{110} ) + V^{2} \rho_{0} \xi^{2} (e_{150}^{2} {\kern 1pt} + (c_{110} + c_{440} - V^{2} \rho_{0} ) \in_{110} ) - \gamma^{2} (e_{150} e_{310} V^{2} \rho_{0} + c_{130} (e_{150}^{2} {\kern 1pt} + c_{440} \in_{110} )))/(c_{440} \xi^{2} (e_{330}^{2} + c_{330} \in_{330} ))$$
(47)
$$\begin{aligned} L_{22} & = (e_{330} ((2c_{440} e_{310} + 2c_{130} (e_{150} + e_{310} ) - c_{110} e_{330} + e_{330} V^{2} \rho_{0} )\xi^{2} ) \\ & \quad - c_{330} \xi^{2} ((e_{150} + e_{310} )^{2} + c_{440} \in_{110} ) + (c_{130}^{2} + 2c_{130} c_{440} + c_{440} V^{2} \rho_{0} )\xi^{2} \in_{330} \\ & \quad + c_{330} \xi^{2} ( - c_{110} \xi^{2} + V^{2} \rho_{0} \xi^{2} ) \in_{330} )/(c_{440} \xi^{2} (e_{330}^{2} + c_{330} \in_{330} )) \\ \end{aligned}$$
(48)
$$\begin{aligned} L_{24} & = - (\xi^{2} (c_{130}^{2} {\kern 1pt} \in_{110} {\kern 1pt} - c_{110} (2e_{150} e_{330} + c_{330} \in_{110} ) + 2c_{130} (e_{150} (e_{150} + e_{310} ) + c_{440} \in_{110} ) - c_{440} (c_{310}^{2} {\kern 1pt} + c_{110} \in_{330} )) \\ & \quad + V^{2} \rho_{0} \xi^{2} ((e_{150} + e_{310} )^{2} + 2e_{150} e_{330} + (c_{330} + c_{440} ) \in_{110} + {\kern 1pt} \,(c_{110} + c_{440} - V^{2} \rho_{0} ) \in_{330} ) \\ & \quad + c_{330} (e_{150}^{2} + 3e_{150} e_{310} + e_{310}^{2} + c_{440} \in_{110} + c_{110} \in_{330} - V^{2} \rho_{0} \in_{330} ))/(c_{440} \xi^{2} (e_{330}^{2} + c_{330} \in_{330} )) \\ \end{aligned}$$
(49)
$$L_{26} = - c_{110} \xi^{2} (e_{150}^{2} {\kern 1pt} + c_{440} \in_{110} ) + V^{2} \rho_{0} \xi^{2} (e_{150}^{2} {\kern 1pt} + (c_{110} + c_{440} - V^{2} \rho_{0} ) \in_{110} ))/(c_{440} \xi^{2} (e_{330}^{2} + c_{330} \in_{330} ))$$
(50)

Appendix 2

Expressions of \(k_{ij} (x,\omega )\) and \(\beta_{ij}\) appearing in (15) are given as follows.

$$k_{11} (x,\omega ) = \int\limits_{0}^{\infty } {(\;M_{11} } (\xi ) - \beta_{11} )\sin \xi (\omega - x)d\xi$$
(51)
$$k_{12} (x,\omega ) = \int\limits_{0}^{\infty } {(\;M_{12} } (\xi ) - \beta_{12} )\cos \xi (\omega - x)d\xi$$
(52)
$$k_{13} (x,\omega ) = \int\limits_{0}^{\infty } {(\;M_{13} } (\xi ) - \beta_{13} )\sin \xi (\omega - x)d\xi$$
(53)
$$k_{21} (x,\omega ) = \int\limits_{0}^{\infty } {(\;M_{21} } (\xi ) - \beta_{21} )\sin \xi (\omega - x)d\xi$$
(54)
$$k_{22} (x,\omega ) = \int\limits_{0}^{\infty } {(\;M_{22} } (\xi ) - \beta_{22} )\cos \xi (\omega - x)d\xi$$
(53)
$$k_{23} (x,\omega ) = \int\limits_{0}^{\infty } {(\;M_{23} } (\xi ) - \beta_{23} )\sin \xi (\omega - x)d\xi$$
(54)

where

$$M_{11} (\xi ) = \xi \sum\limits_{j = 1}^{6} {A_{j}^{p} } k_{j} ,\quad M_{12} (\xi ) = \xi \sum\limits_{j = 1}^{6} {A_{j}^{\eta } } k_{j} ,\quad M_{13} (\xi ) = \xi \sum\limits_{j = 1}^{6} {A_{j}^{q} } k_{j}$$
(55)
$$M_{21} (\xi ) = \xi \sum\limits_{j = 1}^{6} {A_{j}^{p} } \lambda_{j} ,\quad M_{22} (\xi ) = \xi \sum\limits_{j = 1}^{6} {A_{j}^{\eta } } \lambda_{j} ,\quad M_{23} (\xi ) = \xi \sum\limits_{j = 1}^{6} {A_{j}^{q} } \lambda_{j}$$
(56)
$$\beta_{11} = \mathop {\lim }\limits_{\xi \to \infty } \;M_{11} (\xi ),\quad \beta_{12} = \mathop {\lim }\limits_{\xi \to \infty } \;M_{12} (\xi ),\quad \beta_{13} = \mathop {\lim }\limits_{\xi \to \infty } \;M_{13} (\xi )$$
(57)
$$\beta_{21} = \mathop {\lim }\limits_{\xi \to \infty } \;M_{21} (\xi ),\quad \beta_{22} = \mathop {\lim }\limits_{\xi \to \infty } \;M_{22} (\xi ),\quad \beta_{23} = \mathop {\lim }\limits_{\xi \to \infty } \;M_{23} (\xi )$$
(58)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Çömez, İ. Frictional moving contact problem between a conducting rigid cylindrical punch and a functionally graded piezoelectric layered half plane. Meccanica 56, 3039–3058 (2021). https://doi.org/10.1007/s11012-021-01407-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-021-01407-2

Keywords

Navigation