Skip to main content
Log in

Frictional moving contact problem between a functionally graded monoclinic layer and a rigid punch of an arbitrary profile

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

In this study, the moving contact problem of a rigid flat and cylindrical punch on a graded monoclinic layer is considered based on the linear elasticity theory. The punch is subjected to concentrated normal and tangential forces and moves steadily with a constant velocity on the boundary. The material properties of the graded layer are assumed to vary exponentially through the thickness direction. The friction between the layer and the punch is considered. Using the integral transform technique and boundary conditions of the problem, a second kind singular integral equation is obtained and solved numerically using the Gauss–Jacobi integration formulas. The effect of the moving velocity, the fiber angle, the material inhomogeneity, the friction coefficient, the punch radius and length, and the external load on the contact stress and in-plane stress is investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Giannakopoulos, A.E., Suresh, S.: Indentation of solids with gradients in elastic properties: part II. Axisymmetric indentors. Int. J. Solids Struct. 34(19), 2393–2428 (1997)

    Article  MATH  Google Scholar 

  2. Liu, T.J., Wang, Y.S., Zhang, C.: Axisymmetric frictionless contact of functionally graded materials. Arch. Appl. Mech. 78(4), 267–282 (2008)

    Article  MATH  Google Scholar 

  3. Vasiliev, A., Volkov, S., Aizikovich, S., Jeng, Y.R.: Axisymmetric contact problems of the theory of elasticity for inhomogeneous layers. ZAMM J. Appl. Math. Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 94(9), 705–712 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  4. Giannakopoulos, A.E., Pallot, P.: Two-dimensional contact analysis of elastic graded materials. J. Mech. Phys. Solids 48(8), 1597–1631 (2000)

    Article  MATH  Google Scholar 

  5. Chen, P., Chen, S., Peng, J.: Frictional contact of a rigid punch on an arbitrarily oriented gradient half-plane. Acta Mech. 226(12), 4207–4221 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  6. Choi, H.J.: On the plane contact problem of a functionally graded elastic layer loaded by a frictional sliding flat punch. J. Mech. Sci Technol. 23(10), 2703–2713 (2009)

    Article  Google Scholar 

  7. Guler, M.A., Erdogan, F.: Contact mechanics of graded coatings. Int. J. Solids Struct. 41(14), 3865–3889 (2004)

    Article  MATH  Google Scholar 

  8. Guler, M.A., Erdogan, F.: The frictional sliding contact problems of rigid parabolic and cylindrical stamps on graded coatings. Int. J. Mech. Sci. 49(2), 161–182 (2007)

    Article  Google Scholar 

  9. Ke, L.L., Wang, Y.S.: Two-dimensional sliding frictional contact of functionally graded materials. Eur. J. Mech. A/Solids 26(1), 171–188 (2007)

    Article  MATH  Google Scholar 

  10. Chen, P., Chen, S.: Contact behaviors of a rigid punch and a homogeneous half-space coated with a graded layer. Acta Mech. 223(3), 563–577 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  11. Yang, J., Ke, L.L.: Two-dimensional contact problem for a coating-graded layer-substrate structure under a rigid cylindrical punch. Int. J. Mech. Sci. 50(6), 985–994 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  12. Chidlow, S.J., Teodorescu, M.: Sliding contact problems involving inhomogeneous materials comprising a coating-transition layer-substrate and a rigid punch. Int. J. Solids Struct. 51(10), 1931–1945 (2014)

    Article  Google Scholar 

  13. Chen, P., Chen, S., Peng, J.: Interface behavior of a thin-film bonded to a graded layer coated elastic half-plane. Int. J. Mech. Sci. 115, 489–500 (2016)

    Article  Google Scholar 

  14. Chen, P., Chen, S., Peng, J., Gao, F., Liu, H.: The interface behavior of a thin film bonded imperfectly to a finite thickness gradient substrate. Eng. Fract. Mech. 217, 106529 (2019)

    Article  Google Scholar 

  15. Rhimi, M., El-Borgi, S., Lajnef, N.: A double receding contact axisymmetric problem between a functionally graded layer and a homogeneous substrate. Mech. Mater. 43(12), 787–798 (2011)

    Article  Google Scholar 

  16. El-Borgi, S., Usman, S., Güler, M.A.: A frictional receding contact plane problem between a functionally graded layer and a homogeneous substrate. Int. J. Solids Struct. 51(25–26), 4462–4476 (2014)

    Article  Google Scholar 

  17. El-Borgi, S., Çömez, I.: A receding frictional contact problem between a graded layer and a homogeneous substrate pressed by a rigid punch. Mech. Mater. 114, 201–214 (2017)

    Article  Google Scholar 

  18. Yilmaz, K.B., Comez, I., Yildirim, B., Güler, M.A., El-Borgi, S.: Frictional receding contact problem for a graded bilayer system indented by a rigid punch. Int. J. Mech. Sci. 141, 127–142 (2018)

    Article  Google Scholar 

  19. Çömez, I., El-Borgi, S., Yildirim, B.: Frictional receding contact problem of a functionally graded layer resting on a homogeneous coated half-plane. Arch. Appl. Mech. 90, 2113–2131 (2020)

    Article  Google Scholar 

  20. Adıyaman, G., Birinci, A., Öner, E., Yaylacı, M.: A receding contact problem between a functionally graded layer and two homogeneous quarter planes. Acta Mech. 227(6), 1753–1766 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  21. Yan, J., Mi, C.: Double contact analysis of multilayered elastic structures involving functionally graded materials. Arch. Mech. 69, 3 (2017)

    MathSciNet  Google Scholar 

  22. Yan, J., Mi, C., Liu, Z.: A semianalytical and finite-element solution to the unbonded contact between a frictionless layer and an FGM-coated half-plane. Math. Mech. Solids 24(2), 448–464 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  23. Cao R, Mi C (2021) On the receding contact between a graded and a homogeneous layer due to a flat-ended indenter. Math. Mech. Solids 10812865211043152

  24. Yaylacı, M., Eyüboğlu, A., Adıyaman, G., Yaylacı, E.U., Öner, E., Birinci, A.: Assessment of different solution methods for receding contact problems in functionally graded layered mediums. Mech. Mater. 154, 103730 (2021)

    Article  Google Scholar 

  25. Ning, X., Lovell, M., Slaughter, W.S.: Asymptotic solutions for axisymmetric contact of a thin, transversely isotropic elastic layer. Wear 260(7–8), 693–698 (2006)

    Article  Google Scholar 

  26. Patra, R., Barik, S.P., Chadhuri, P.K.: Frictionless contact of a rigid punch indenting a transversely isotropic elastic layer. Int. J. Adv. Appl. Math. Mech 3, 100–111 (2016)

    MathSciNet  MATH  Google Scholar 

  27. Patra, R., Barik, S.P., Chaudhuri, P.K.: Frictionless contact between a rigid indentor and a transversely isotropic functionally graded layer. Int. J. Appl. Mech. Eng. 23(3), 655–671 (2018)

    Article  Google Scholar 

  28. Kuo, C.H., Keer, L.M.: Contact stress analysis of a layered transversely isotropic half-space. J. Tribol. 114(2), 253–261 (1992)

    Article  Google Scholar 

  29. Liu, H., Pan, E.: Indentation of a flat-ended cylinder over a transversely isotropic and layered half-space with imperfect interfaces. Mech. Mater. 118, 62–73 (2018)

    Article  Google Scholar 

  30. Hou, P.F., Zhang, W.H., Chen, J.Y.: Three-dimensional exact solutions of transversely isotropic coated structures under tilted circular flat punch contact. Int. J. Mech. Sci. 151, 471–497 (2019)

    Article  Google Scholar 

  31. Hou, P.F., Zhang, W.H., Chen, J.Y.: Three-dimensional exact solutions of homogeneous transversely isotropic coated structures under spherical contact. Int. J. Solids Struct. 161, 136–173 (2019)

    Article  Google Scholar 

  32. Giannakopoulos, A.E., Suresh, S.: Theory of indentation of piezoelectric materials. Acta Mater. 47(7), 2153–2164 (1999)

    Article  Google Scholar 

  33. Ke, L.L., Wang, Y.S., Yang, J., Kitipornchai, S.: Sliding frictional contact analysis of functionally graded piezoelectric layered half-plane. Acta Mech. 209(3), 249–268 (2010)

    Article  MATH  Google Scholar 

  34. Liu, M., Yang, F.: Finite element analysis of the spherical indentation of transversely isotropic piezoelectric materials. Model. Simul. Mater. Sci. Eng. 20(4), 045019 (2012)

    Article  Google Scholar 

  35. Rodríguez-Tembleque, L., Buroni, F.C., Sáez, A.: Boundary element analysis of the frictionless indentation of piezoelectric films. Eur. J. Comput. Mech. 25(1–2), 24–37 (2016)

    Article  Google Scholar 

  36. Elloumi, R., El-Borgi, S., Guler, M.A., Kallel-Kamoun, I.: The contact problem of a rigid stamp with friction on a functionally graded magneto-electro-elastic half-plane. Acta Mech. 227(4), 1123–1156 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  37. Patra, R., Barik, S.P., Chaudhuri, P.K.: Frictionless contact of a rigid punch indenting an elastic layer having piezoelectric properties. Acta Mech. 228(2), 367–384 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  38. Su, J., Ke, L.L., El-Borgi, S., Xiang, Y., Wang, Y.S.: An effective method for the sliding frictional contact of a conducting cylindrical punch on FGPMs. Int. J. Solids Struct. 141, 127–136 (2018)

    Article  Google Scholar 

  39. Chen, P., Chen, S., Guo, W., Gao, F.: The interface behavior of a thin piezoelectric film bonded to a graded substrate. Mech. Mater. 127, 26–38 (2018)

    Article  Google Scholar 

  40. Chen, P., Chen, S., Liu, H., Peng, J., Gao, F.: The interface behavior of multiple piezoelectric films attaching to a finite-thickness gradient substrate. J. Appl. Mech. 87(1), 011003 (2020)

    Article  Google Scholar 

  41. Çömez, İ, Güler, M.A., El-Borgi, S.: Continuous and discontinuous contact problems of a homogeneous piezoelectric layer pressed by a conducting rigid flat punch. Acta Mech. 231(3), 957–976 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  42. Kucuksucu, A., Guler, M.A., Avci, A.: Mechanics of sliding frictional contact for a graded orthotropic half-plane. Acta Mech. 226(10), 3333–3374 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  43. Güler, M.A., Kucuksucu, A., Yilmaz, K.B., Yildirim, B.: On the analytical and finite element solution of plane contact problem of a rigid cylindrical punch sliding over a functionally graded orthotropic medium. Int. J. Mech. Sci. 120, 12–29 (2017)

    Article  Google Scholar 

  44. Alinia, Y., Güler, M.A.: On the fully coupled partial slip contact problems of orthotropic materials loaded by flat and cylindrical indenters. Mech. Mater. 114, 119–133 (2017)

    Article  Google Scholar 

  45. Erbaş, B., Yusufoğlu, E., Kaplunov, J.: A plane contact problem for an elastic orthotropic strip. J. Eng. Math. 70(4), 399–409 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  46. Arslan, O., Dag, S.: Contact mechanics problem between an orthotropic graded coating and a rigid punch of an arbitrary profile. Int. J. Mech. Sci 135, 541–554 (2018)

    Article  Google Scholar 

  47. Alinia, Y., Hosseini-nasab, M., Güler, M.A.: The sliding contact problem for an orthotropic coating bonded to an isotropic substrate. Eur. J. Mech. A Solids 70, 156–171 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  48. Yilmaz, K.B., Çömez, İ, Güler, M.A., Yildirim, B.: Analytical and finite element solution of the sliding frictional contact problem for a homogeneous orthotropic coating-isotropic substrate system. ZAMM J. Appl. Math. Mech. Zeitschrift für Angewandte Mathematik und Mechanik 99(3), e201800117 (2019)

    Article  MathSciNet  Google Scholar 

  49. Çömez, İ, Yilmaz, K.B.: Mechanics of frictional contact for an arbitrary oriented orthotropic material. ZAMM J. Appl. Math. Mech. Zeitschrift für Angewandte Mathematik und Mechanik 99(3), e201800084 (2019)

    Article  MathSciNet  Google Scholar 

  50. Yilmaz, K.B., Çömez, İ, Güler, M.A., Yildirim, B.: Sliding frictional contact analysis of a monoclinic coating/isotropic substrate system. Mech. Mater. 137, 103132 (2019)

    Article  Google Scholar 

  51. Binienda, W.K., Pindera, M.J.: Frictionless contact of layered metal-matrix and polymer-matrix composite half planes. Compos. Sci. Technol. 50(1), 119–128 (1994)

    Article  Google Scholar 

  52. Yilmaz, K.B., Sabuncuoglu, B., Yildirim, B.: Investigation of stress distributions between a frictional rigid cylinder and laminated glass fiber composites. Acta Mech. 232(11), 4379–4403 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  53. Çömez, İ: Contact mechanics of the functionally graded monoclinic layer. Eur. J. Mech. A/Solids 83, 104018 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  54. Chaudhuri, P.K., Ray, S.: Receding contact between an orthotropic layer and an orthotropic half-space. Arch. Mech. 50(4), 743–755 (1998)

    MATH  Google Scholar 

  55. Kahya, V., Ozsahin, T.S., Birinci, A., Erdol, R.: A receding contact problem for an anisotropic elastic medium consisting of a layer and a half plane. Int. J. Solids Struct. 44(17), 5695–5710 (2007)

    Article  MATH  Google Scholar 

  56. Yildirim, B., Yilmaz, K.B., Comez, I., Guler, M.A.: Double frictional receding contact problem for an orthotropic layer loaded by normal and tangential forces. Meccanica 54(14), 2183–2206 (2019)

    Article  MathSciNet  Google Scholar 

  57. Cao, R., Li, L., Li, X., Mi, C.: On the frictional receding contact between a graded layer and an orthotropic substrate indented by a rigid flat-ended stamp. Mech. Mater. 158, 103847 (2021)

    Article  Google Scholar 

  58. Galin, L.A., Gladwell, G.M.L. (eds.): Contact Problems: the Legacy of LA Galin (Solid Mechanics and Its Applications), vol. 155. Springer, Dordrecht (2008)

    Google Scholar 

  59. Çömez, İ: Frictional moving contact problem for a layer indented by a rigid cylindrical punch. Arch. Appl. Mech. 87(12), 1993–2002 (2017)

    Article  Google Scholar 

  60. Balci, M.N., Dag, S.: Dynamic frictional contact problems involving elastic coatings. Tribol. Int. 124, 70–92 (2018)

    Article  Google Scholar 

  61. Balci, M.N., Dag, S.: Solution of the dynamic frictional contact problem between a functionally graded coating and a moving cylindrical punch. Int. J. Solids Struct. 161, 267–281 (2019)

    Article  Google Scholar 

  62. Georgiadis, H.G.: Moving punch on a highly orthotropic elastic layer. Acta Mech. 68(3), 193–202 (1987)

    Article  MATH  Google Scholar 

  63. De, J., Patra, B.: Dynamic punch problems in an orthotropic elastic half-plane. Indian J. Pure Appl. Math. 25, 767–767 (1994)

    MATH  Google Scholar 

  64. Zhou, Y.T., Lee, K.Y., Jang, Y.H.: Indentation theory on orthotropic materials subjected to a frictional moving punch. Arch. Mech. 66(2), 71–94 (2014)

    MathSciNet  MATH  Google Scholar 

  65. Çömez, I., Güler, M.A.: On the contact problem of a moving rigid cylindrical punch sliding over an orthotropic layer bonded to an isotropic half plane. Math. Mech. Solids 25(10), 1924–1942 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  66. Zhou, Y.T., Lee, K.Y.: Contact problem for magneto-electro-elastic half-plane materials indented by a moving punch. Part I: closed-form solutions. Int. J. Solids Struct. 49(26), 3853–3865 (2012)

    Article  Google Scholar 

  67. Zhou, Y.T., Kim, T.W.: Dynamic contact modeling of anisotropic magneto-electro-elastic materials with volume fraction changes. Compos. Struct. 131, 1099–1110 (2015)

    Article  Google Scholar 

  68. Çömez, İ: Frictional moving contact problem between a conducting rigid cylindrical punch and a functionally graded piezoelectric layered half plane. Meccanica 56, 1–20 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  69. Çömez, İ: Frictional moving contact problem of a magneto-electro-elastic half plane. Mech. Mater. 154, 103704 (2021)

    Article  Google Scholar 

  70. Lekhnitskii, S.G.: Theory of Elasticity of an Anisotropic Body. Holden Day Inc., San Francisco, Berlin (1963)

    MATH  Google Scholar 

  71. Erdogan, F.: Mixed boundary value problems in mechanics. In: Nemat-Nasser, S. (ed.) Mechanics Today, vol. 4. Pergamon Press, Oxford (1978)

    Google Scholar 

  72. Krenk, S.: On the use of the interpolation polynomial for solutions of singular integral equations. Q. Appl. Math. 32(4), 479–484 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  73. Pindera, M.J., Lane, M.S.: Frictionless contact of layered half-planes, Part II: Numerical results. J. Appl. Mech. 60(3), 640–645 (1993)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to İsa Çömez.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

The material constants \(\overline{C}_{ij}^{0}\) can be expressed as follows [73]

$$ \overline{C}_{11}^{0} = C_{11} \cos^{4} \theta + 2(C_{12} + 2C_{66} )\cos^{2} \theta \sin^{2} \theta + C_{22} \sin^{4} \theta, $$
(29)
$$ \overline{C}_{12}^{0} = (C_{11} + C_{22} - 4C_{66} )\cos^{2} \theta \sin^{2} \theta + C_{12} (\cos^{4} \theta + \sin^{4} \theta ), $$
(30)
$$ \overline{C}_{13}^{0} = C_{13} \cos^{2} \theta + C_{23} \sin^{2} \theta, $$
(31)
$$ \overline{C}_{16}^{0} = \cos \theta \sin \theta (\cos^{2} \theta (C_{11} - C_{12} - 2C_{66} ) + \sin^{2} \theta (C_{12} - C_{22} + 2C_{66} )), $$
(32)
$$ \overline{C}_{22}^{0} = C_{11} \sin^{4} \theta + 2(C_{12} + 2C_{66} )\cos^{2} \theta \sin^{2} \theta + C_{22} \cos^{4} \theta, $$
(33)
$$ \overline{C}_{23}^{0} = C_{23} \cos^{2} \theta + C_{13} \sin^{2} \theta, $$
(34)
$$ \overline{C}_{33}^{0} = C_{33}, $$
(35)
$$ \overline{C}_{36}^{0} = (C_{13} - C_{23} )\cos \theta \sin \theta, $$
(36)
$$ \overline{C}_{44}^{0} = C_{44} \cos^{2} \theta + C_{55} \sin^{2} \theta, $$
(37)
$$ \overline{C}_{45}^{0} = (C_{55} - C_{44} )\cos \theta \sin \theta, $$
(38)
$$ \overline{C}_{55}^{0} = C_{55} \cos^{2} \theta + C_{44} \sin^{2} \theta, $$
(39)
$$ \overline{C}_{66}^{0} = (C_{11} - 2C_{12} - 2C_{22} )\cos^{2} \theta \sin^{2} \theta + C_{66} (\sin^{2} \theta - \cos^{2} \theta )^{2}, $$
(40)

where \(C_{ij}\) are the stiffness coefficient of the layer in the directions parallel and perpendicular to the fiber.

Appendix B: Cylindrical punch figures

See Figs. 4, 5, 6, 7, 8 and 9.

Appendix C: Flat punch figures

See Figs. 10, 11, 12, 13, 14 and 15.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Çömez, İ. Frictional moving contact problem between a functionally graded monoclinic layer and a rigid punch of an arbitrary profile. Acta Mech 233, 1435–1453 (2022). https://doi.org/10.1007/s00707-022-03178-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-022-03178-7

Navigation