Skip to main content

Advertisement

Log in

Theoretical analysis of the energy conversion and vibration control characteristics of a slanted beam termination

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

The fundamental beam structure is often regarded as a wave or energy carrier in a wide range of research topics for structural engineering. Nevertheless, in the related literature the beam is positioned either horizontally or vertically, which may limit its application flexibility. Very few studies have investigated the energy conversion and vibration control characteristics induced by the flexural and axial waves coupling at a slanted angle discontinuity. This research aims to investigate the dynamic characteristics of a slanted beam termination (SBT), a finite beam with one end attached to a host structure and the other end free in a slant configuration. A generic wave-based formulation is developed to obtain both the waveguides distribution and the point impedance of the SBT taking the flexural and axial waves coupling into account. The semi-infinite beam (SIB) with the proposed SBT case is compared with the classic two SIBs case in terms of the energy conversion phenomena influenced by the connection angle and frequency. In the SIB with the SBT case, a certain connection angle will enable the SBT to achieve a substantial energy conversion at its resonance. From the vibration control perspective, a benchmark cantilevered beam is adopted to examine the SBT’s vibration control performance theoretically and is verified experimentally. This research lays the foundation for the design of the beam-like device for energy conversion and vibration suppression by the variation of connection angle rather than the conventional tuning method based on the stiffness, mass and damping.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Noiseux DU (1970) Measurement of power flow in uniform beams and plates. J Acoust Soc Am 47:238–247. https://doi.org/10.1121/1.1911472

    Article  Google Scholar 

  2. Verheij JW (1980) Cross spectral density methods for measuring structure borne power flow on beams and pipes. J Sound Vib 70:133–138. https://doi.org/10.1016/0022-460X(80)90559-3

    Article  Google Scholar 

  3. Pavic G (2007) Chapter 16 structure-borne energy flow. In: Handbook of noise vibration and control, pp 232–240. http://onlinelibrary.wiley.com/doi/abs/10.1002/9780470209707.ch16

  4. Lyon RH, Eichler E (1964) Random vibration of connected structures. J Acoust Soc Am 36:1344–1354. https://doi.org/10.1121/1.1919207

    Article  Google Scholar 

  5. Scharton TD, Lyon RH (1968) Power flow and energy sharing in random vibration. J Acoust Soc Am 43:1332–1343. https://doi.org/10.1121/1.1910990

    Article  Google Scholar 

  6. Fahy F, Gardonio P (2007) Sound and stuctural vibration:radiation, transmission and response. Academic Press, London

    Google Scholar 

  7. Brennan MJ, Dayou J (2000) Global control of vibration using a tunable vibration neutralizer. J Sound Vib 232:585–600. https://doi.org/10.1006/jsvi.1999.2757

    Article  Google Scholar 

  8. Dayou J, Brennan MJ (2002) Global control of structural vibration using multiple-tuned tunable vibration neutralizers. J Sound Vib 258:345–357. https://doi.org/10.1006/jsvi.5188

    Article  MathSciNet  MATH  Google Scholar 

  9. Dayou J, Brennan MJ (2003) Experimental verification of the optimal tuning of a tunable vibration neutralizer for global vibration control. Appl Acoust 64:311–323. https://doi.org/10.1016/S0003-682X(02)00067-1

    Article  Google Scholar 

  10. Dayou J (2006) Fixed-points theory for global vibration control using vibration neutralizer. J Sound Vib 292:765–776. https://doi.org/10.1016/j.jsv.2005.08.032

    Article  Google Scholar 

  11. Brennan MJJ (1998) Control of flexural waves on a beam using a tunable vibration neutraliser. J Sound Vib 222:389–407. https://doi.org/10.1006/jsvi.1998.2031

    Article  Google Scholar 

  12. El-Khatib HM, Mace BR, Brennan MJ (2005) Suppression of bending waves in a beam using a tuned vibration absorber. J Sound Vib 288:1157–1175. https://doi.org/10.1016/j.jsv.2005.01.024

    Article  Google Scholar 

  13. Issa JS (2019) Exact tuning of a vibration neutralizer for the reduction of flexural waves in beams. J Acoust Soc Am 146:486–500. https://doi.org/10.1121/1.5116690

    Article  Google Scholar 

  14. Goyder HGD, White RG (1980) Vibrational power flow from machines into built-up structures, part I: introduction and approximate analyses of beam and plate-like foundations. J Sound Vib 68:59–75. https://doi.org/10.1016/0022-460X(80)90452-6

    Article  MATH  Google Scholar 

  15. Pinnington RJ, White RG (1981) Power flow through machine isolators to resonant and non-resonant beams. J Sound Vib 75:179–197. https://doi.org/10.1016/0022-460X(81)90338-2

    Article  Google Scholar 

  16. Koh YK, White RGG (1996) Analysis and control of vibrational power transmission to machinery supporting structures subjected to a multi-excitation system, part II: vibrational power analysis and control schemes. J Sound Vib 196:495–508. https://doi.org/10.1006/jsvi.1996.0497

    Article  Google Scholar 

  17. Elliott SJ, Johnson ME (1993) Radiation modes and the active control of sound power. J Acoust Soc Am. https://doi.org/10.1121/1.407490

    Article  Google Scholar 

  18. Gibbs GP, Fullerf CR (1992) Experiments on active control of vibrational power flow using piezoceramic actuators/sensors. AIAA J. 30:457–463. https://doi.org/10.2514/3.10939

    Article  Google Scholar 

  19. Fuller CR, Gibbs GP, Silcox RJ (1990) Simultaneous active control of flexural and extensional waves in beams. J Intell Mater Syst Struct 1:235–247

    Article  Google Scholar 

  20. Cremer L, Heckl M, Petersson BA (2004) Structure-borne sound: structural vibrations and sound radiation at audio frequencies, 3rd edn. Springer, Berlin

    Google Scholar 

  21. Nashif AD, Jones DIG (1969) A resonant beam tuned damping device. J. Eng. Power 91:143–147

    Article  Google Scholar 

  22. Jones DIG, Nashif AD, Stargardter H (1975) Vibrating beam dampers for reducing vibrations in gas turbine blades. J Eng Gas Turbines Power. https://doi.org/10.1115/1.3445888

    Article  Google Scholar 

  23. Jacquot RG, Foster JE (1977) Optimal cantilever dynamic vibration absorbers. J Manuf Sci Eng 99:138–141

    Google Scholar 

  24. Snowdon JC, Wolfe AA, Kerlin RL (1984) The cruciform dynamic vibration absorber. J Acoust Soc Am 75:1792–1799. https://doi.org/10.1121/1.390980

    Article  Google Scholar 

  25. Arpaci A, Savci M (1987) A cantilever beam damper suppressing rectangular plate vibrations. J Sound Vib 115:225–232

    Article  Google Scholar 

  26. Aida T, Toda S, Ogawa N, Imada Y (1992) Vibration control of beams by beam-type vibration dynamic vibration absorbers. J Eng Mech 118:248–258

    Article  Google Scholar 

  27. Hua Y, Wong W, Cheng L (2018) Optimal design of a beam-based dynamic vibration absorber using fixed-points theory. J Sound Vib 421:111–131. https://doi.org/10.1016/j.jsv.2018.01.058

    Article  Google Scholar 

  28. Gardonio P, Brennan MJ (2018) Mobility and impedance methods in structural dynamics. Advanced applications in acoustics, noise and vibration. CRC Press, pp 403–461

    Google Scholar 

  29. Ginsberg JH (2009) Coupling of axial and transverse displacement fields in a straight beam due to boundary conditions. J Acoust Soc Am 126:1120–1124. https://doi.org/10.1121/1.3183368

    Article  Google Scholar 

  30. Renno JM, Mace BR (2013) Calculation of reflection and transmission coefficients of joints using a hybrid finite element/wave and finite element approach. J Sound Vib 332:2149–2164. https://doi.org/10.1016/j.jsv.2012.04.029

    Article  Google Scholar 

  31. Langley RS, Heron KH (1990) Elastic wave transmission through plate/beam junctions. J Sound Vib 143:241–253. https://doi.org/10.1016/0022-460X(90)90953-W

    Article  Google Scholar 

  32. Horner JL, White RGG, Honer J, White RGG (1991) Prediction of vibration power transmission through bends and joints in beam-like structures. J Sound Vib 147:87–103

    Article  Google Scholar 

  33. Gardonio P, Brennan MJ (2002) On the origins and development of mobility and impedance methods in structural dynamics. J Sound Vib. https://doi.org/10.1006/jsvi.2001.3879

    Article  Google Scholar 

  34. Brennan MJ (1997) Vibration control using a tunable vibration neutralizer. Proc Inst Mech Eng C J Mech Eng Sci 211:91–107. https://doi.org/10.1243/0954406971521683

    Article  Google Scholar 

  35. Bonello P (2011) Adaptive tuned vibration absorbers: design principles, concepts and physical implementation. Vib Anal Control New Trends Dev. https://doi.org/10.5772/23558

    Article  Google Scholar 

  36. Kidner M, Brennan MJ (1999) Improving the performance of a vibration neutraliser by actively removing damping. J Sound Vib 221:587–606. https://doi.org/10.1006/jsvi.1998.2027

    Article  Google Scholar 

  37. Kidner MRF, Brennan MJ (2001) Real-time control of both stiffness and damping in an active vibration neutralizer. Smart Mater Struct 10:758–769. https://doi.org/10.1088/0964-1726/10/4/321

    Article  Google Scholar 

  38. Païdoussis MP, Li GX (1993) Pipes conveying fluid: a model dynamical problem. J Fluids Struct 7:137–204

    Article  Google Scholar 

  39. Yu D, Wen J, Zhao H, Liu Y, Wen X (2011) Flexural vibration band gap in a periodic fluid-conveying pipe system based on the Timoshenko beam theory. J Vib Acoust Trans ASME 133:8–10. https://doi.org/10.1115/1.4001183

    Article  Google Scholar 

  40. Yu XY, Chen L (2015) Singular perturbation adaptive control and vibration suppression of free-flying flexible space manipulators. Proc Inst Mech Eng C J Mech Eng Sci 229:1989–1997. https://doi.org/10.1177/0954406214551777

    Article  Google Scholar 

  41. Sabatini M, Gasbarri P, Monti R, Palmerini GB (2012) Vibration control of a flexible space manipulator during on orbit operations. Acta Astronaut 73:109–121. https://doi.org/10.1016/j.actaastro.2011.11.012

    Article  Google Scholar 

Download references

Acknowledgements

The authors appreciate the advice for improving the content and format during the writing process from Dr. Wenjing Sun and Dr. Haoran Zuo. The gratitude also goes to the technical support from the technicians during the experiment.

Funding

This study was not funded.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yingyu Hua.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Formulation of Reflection matrix and Transmission matrix

In Fig. 1a, suppose the incident waveguide \({\mathbf{q}}_{\mathbf{A}}^{+}\) is towards the connection point, a reflected waveguide \({\mathbf{q}}_{\mathbf{A}}^{-}\) in the horizontal beam and a transmitted waveguide \({\mathbf{q}}_{\mathbf{B}}^{+}\) are generated in the slanted beam respectively. Note that the two beams are semi-infinite, so \({\mathbf{q}}_{\mathbf{B}}^{-}\) does not exist in this case. The components in the waveguide vector comprise the wave magnitudes of both flexural and axial waves. In the horizontal section, the incident flexural wave \({W}_{in}\) and axial wave \({U}_{in}\) as well as the reflected flexural wave \({W}_{rf}\) and axial wave \({U}_{rf}\) coexist and they can be represented in the wave formulation.

$${W}_{in}={A}^{+}{e}^{-i{k}_{b1}{x}_{1}}+{A}_{N}^{+}{e}^{-{k}_{b1}{x}_{1}}$$
(15)
$${W}_{rf}={A}^{-}{e}^{i{k}_{b1}{x}_{1}}+{A}_{N}^{-}{e}^{{k}_{b1}{x}_{1}}$$
(16)
$${U}_{in}={B}^{+}{e}^{-i{k}_{a1}{x}_{1}}$$
(17)
$${U}_{rf}={B}^{-}{e}^{i{k}_{a1}{x}_{1}}$$
(18)

where \({k}_{b1}\,\text{and}\,{k}_{a1}\) are the wavenumbers for the flexural and axial waves in the horizontal beam, respectively. The incident waveguide and the reflected waveguide are therefore given as:

$${\mathbf{q}}_{\mathbf{A}}^{+}={\left[{A}^{+}{A}_{N}^{+}{B}^{+}\right]}^{T};$$
(19)
$${\mathbf{q}}_{\mathbf{A}}^{-}={\left[{A}^{-}{A}_{N}^{-}{B}^{-}\right]}^{T}.$$
(20)

In the slanted beam part, the transmitted flexural and axial waves \({W}_{tm}\) and \({U}_{tm}\) are given by:

$${W}_{tm}={C}^{+}{e}^{-i{k}_{b2}{x}_{1}}+{C}_{N}^{+}{e}^{-{k}_{b2}{x}_{1}};$$
(21)
$${U}_{tm}={D}^{+}{e}^{-i{k}_{a2}{x}_{1}},$$
(22)

where \({k}_{b2}\) and \({k}_{a2}\) are the wavenumbers for the flexural and axial waves in the slanted beam, respectively.

The transmitted waveguide is then represented as:

$${\mathbf{q}}_{\mathbf{B}}^{+}=\left[{C}^{+}{C}_{N}^{+}{D}^{+}\right].$$
(23)

The reflection and transmission matrices from A to B satisfy the following equilibrium:

$${\mathbf{q}}_{\mathbf{A}}^{-}={\mathbf{R}}_{\mathbf{A}\mathbf{B}}{\mathbf{q}}_{\mathbf{A}}^{+};$$
(24)
$${\mathbf{q}}_{\mathbf{B}}^{+}={\mathbf{T}}_{\mathbf{A}\mathbf{B}}{\mathbf{q}}_{\mathbf{A}}^{+}.$$
(25)

To derive the reflection and transmission matrices at the connection point in Fig. 1a, the force and displacement equilibriums are established.

$$\left\{\begin{array}{l}{E}_{1}{I}_{1}\frac{{\partial }^{2}{W}_{1}}{\partial {x}_{1}^{2}}={E}_{2}{I}_{2}\frac{{\partial }^{2}{W}_{2}}{\partial {x}_{2}^{2}};\\ {E}_{1}{S}_{1}\frac{\partial {U}_{1}}{\partial {x}_{1}}={E}_{2}{S}_{2}\frac{\partial {U}_{2}}{\partial {x}_{2}}\mathrm{cos}\beta +{E}_{2}{I}_{2}\frac{{\partial }^{3}{W}_{2}}{\partial {x}_{2}^{3}}\mathrm{sin}\beta ;\\ {E}_{1}{S}_{1}\frac{{\partial }^{3}{W}_{1}}{\partial {x}_{1}^{3}}=-{E}_{2}{S}_{2}\frac{\partial {U}_{2}}{\partial {x}_{2}}\mathrm{sin}\beta +{E}_{2}{I}_{2}\frac{{\partial }^{3}{W}_{2}}{\partial {x}_{2}^{3}}\mathrm{cos}\beta ;\\ {U}_{1}={U}_{2}\mathrm{cos}\beta -{W}_{2}\mathrm{sin}\beta \\ {W}_{1}={U}_{2}\mathrm{sin}\beta +{W}_{2}\mathrm{cos}\beta \\ \frac{\partial {W}_{2}}{\partial {x}_{2}}=\frac{\partial {W}_{1}}{\partial {x}_{1}}.\end{array}\right.$$
(26)

where \({W}_{1}={W}_{in}+{W}_{rf}\); \({W}_{2}={W}_{tm}\); \({U}_{1}={U}_{in}+{U}_{rf};\,{U}_{2}={U}_{tm}.\) Each column of \({\mathbf{R}}_{\mathbf{A}\mathbf{B}}\) and \({\mathbf{T}}_{\mathbf{A}\mathbf{B}}\) correspond to the transmission coefficient from the incident wave magnitude to the transmitted and reflected wave magnitude respectively. For instance, let \({\mathbf{q}}_{\mathbf{A}}^{+}=\left[{A}^{+}\,0\,0\right]\), the first column of \({\mathbf{R}}_{\mathbf{A}\mathbf{B}}\) and \({\mathbf{T}}_{\mathbf{A}\mathbf{B}}\) could be derived by solving the above equations in Eq. (26). Similarly, when the incident wave is from the inverse direction, i.e., \({\mathbf{q}}_{\mathbf{B}}^{-}\) the incident wave, \({\mathbf{q}}_{\mathbf{A}}^{-}\) the transmitted wave and \({\mathbf{q}}_{\mathbf{B}}^{+}\) the reflected wave, the reflected and transmitted matrices \({\mathbf{R}}_{\mathbf{B}\mathbf{A}}\) and \({\mathbf{T}}_{\mathbf{B}\mathbf{A}}\) could be derived through the same process. The derivation of the transmission and reflection matrices when there is only a unidirectional incident waveguide is the same as presented in the study (Horner and White [32]). But when the bidirectional incident waveguides, i.e., \({\mathbf{q}}_{\mathbf{B}}^{-}\) and \({\mathbf{q}}_{\mathbf{A}}^{+}\) coexist, Eq. (1) in this paper should be employed to present the more general case.

After obtaining the waveguide magnitude through Eq. (26), the reflected and transmitted waves’ energy ratios to the incident wave could be derived. Take the incident propagating flexural wave as an example.

The energy ratio of the reflected flexural wave to the incident flexural wave is:

$${\eta }_{ff}={({A}^{-}/{A}^{+})}^{2}$$
(27)

The energy ratio of the reflected axial wave to the incident flexural wave is:

$${\eta }_{af}={E}_{1}{S}_{1}{k}_{a1}{({B}^{-}/{A}^{+})}^{2}/\left(2{E}_{1}{I}_{1}{k}_{b1}^{3}\right)$$
(28)

The energy ratio of the transmitted flexural wave to the incident flexural wave is

$${\delta }_{ff}={(E}_{2}{I}_{2}{k}_{b2}^{3}{{{C}^{+})}^{2}/({E}_{1}{I}_{1}{k}_{b1}^{3}{A}^{+})}^{2}$$
(29)

The energy ratio of the transmitted flexural wave to the incident flexural wave is

$${\delta }_{af}={(E}_{2}{S}_{2}{k}_{a2}{{{D}^{+})}^{2}/(2{E}_{1}{I}_{1}{k}_{b1}^{3}{A}^{+})}^{2}$$
(30)

Appendix B: Wave approach formulation

Suppose there is a finite beam of length \(L\). The origin of the reference coordinate system is assumed to start at the left end. The internal forces and velocities of the beam can be represented by the shear forces \({\text{S}}_{\text{i}}\), rotational moments \({\text{M}}_{\text{i}}\), lateral velocity \({\dot{\text{W}}_{\text{i}}}\) and angular velocity \({{\dot{\theta}}}_{\text{i}}\). The subscript \(\text{i}=1\) denotes the left end (\(\text{x}=0\)), while \(\text{i}=2\) denotes the right end (\(\text{x}=\text{L}\)). The force and velocity vectors, \(\mathbf{f}\) and \(\text{v}\), are composed of the shear forces and moments, and the flexural and rotational velocities at the two ends, i.e., \(\text{f}={{{\text{S}}_{{1}} {\text{M}}_{{1}} {\text{S}}_{{2}} {\text{M}}_{{2}}}}^{{\rm T}}\) and \(\text{v}={\left\{\begin{array}{ll}\begin{array}{ll}{\dot{W}}_{1}& {\dot{\theta }}_{1}\end{array}& \begin{array}{ll}{\dot{W}_{2}}& {\dot{\theta }}_{2}\end{array}\end{array}\right\}}^{\text{T}}\) as shown in Fig.

Fig. 9
figure 9

a The shear forces, rotational moments, lateral displacement and rotational angle at the two ends of a finite uniform Euler–Bernoulli beam; b axial forces and displacements at the two ends of a finite uniform rod structure

9a.

The lateral displacement at any point \(x\) along a beam can be interpreted as the superposition of positive and negative waves (Fahy and Gardonio 2007):

$$W\left(x\right)={A}_{1}{e}^{-i{k}_{b}x}{+A}_{1N}{e}^{-{k}_{b}x}+{A}_{2}{e}^{i{k}_{b}x}+{A}_{2N}{e}^{{k}_{b}x};$$
(31)

where \({k}_{b}={\left(\rho S/EI\right)}^{1/4}{\omega }^{1/2}\) is the wavenumber of the flexural wave and \({A}_{1},\,{A}_{2,}{A}_{1\mathrm{N}}{,\,A}_{2\mathrm{N}}\) are the complex magnitudes of the propagating and evanescent waves in both directions. Assuming the wave component vector \(\mathbf{q}={\left\{{A}_{1}\,{A}_{1\mathrm{N}}\,{A}_{2}{\,A}_{2\mathrm{N}}\right\}}^{T}\), the internal force vector \(\text{f}\) and the velocity vector \(\text{v}\) satisfy the following relationship:

$$\mathbf{f}={\mathbf{T}}_{1}\mathbf{q};\mathbf{v}={\mathbf{T}}_{2}\mathbf{q}$$
(32)

where transfer matrices \({\mathbf{T}}_{1}{,\mathbf{T}}_{2}\in {\mathbb{C}}^{4\times 4}\) and the detailed expressions for \({\mathbf{T}}_{1}\) and \({\mathbf{T}}_{2}\) can be derived by the relationship between general forces, velocities, and wave magnitudes based on the waveform in Eq. (31). Consequently, the impedance matrix \({\mathbf{Z}}_{\mathbf{b}\mathbf{e}\mathbf{a}\mathbf{m}}\in {\mathbb{C}}^{4\times 4}\) can be derived by \({\mathbf{Z}}_{\mathbf{b}\mathbf{e}\mathbf{a}\mathbf{m}}={\mathbf{T}}_{1}{{\mathbf{T}}_{2}}^{-1}\) as follows:

$${\mathbf{f}=\mathbf{Z}}_{\mathbf{b}\mathbf{e}\mathbf{a}\mathbf{m}}\mathbf{v}=\frac{EI{k}_{b}^{3}}{j\omega N}\left[\begin{array}{ll}\begin{array}{ll}-{K}_{11}& -P\\ -P& {Q}_{11}\end{array}& \begin{array}{ll}{K}_{12}& V\\ -V& {Q}_{12}\end{array}\\ \begin{array}{ll}{K}_{12}& -V\\ V& {Q}_{12}\end{array}& \begin{array}{ll}{-K}_{11}& P\\ P& {Q}_{11}\end{array}\end{array}\right]\mathbf{v};$$
(33)

where

$$\begin{aligned} & K_{{11}} = \cos \left( {k_{b} L} \right)\sinh \left( {k_{b} L} \right) + \sin \left( {k_{b} L} \right)\cosh \left( {k_{b} L} \right), \\ & K_{{12}} = \sinh \left( {k_{b} L} \right) + \sin \left( {k_{b} L} \right), \\ & P = \sinh \left( {k_{b} L} \right)\sin \left( {k_{b} L} \right)/k_{b} , \\ & V = \left[ {\cos \left( {k_{b} L} \right) - \cosh \left( {k_{b} L} \right) } \right]/k_{b} \\ & Q_{{11}} = \left[ {\cos \left( {k_{b} L} \right)\sinh \left( {k_{b} L} \right) - \sin \left( {k_{b} L} \right)\cosh \left( {k_{b} L} \right) } \right]/k_{b}^{2} \\ & Q_{{12}} = \left[ {\sin \left( {k_{b} L} \right) - \sinh \left( {k_{b} L} \right)} \right]/k_{b}^{2} , \\ & N = \cos \left( {k_{b} L} \right)\cosh \left( {k_{b} L} \right) - 1. \\ \end{aligned}$$
(34)

Identically, the longitudinal direction’s impedance \({\mathbf{Z}}_{\mathbf{r}\mathbf{o}\mathbf{d}}\in {\mathbb{C}}^{2\times 2}\) can be derived by the wave formulation of a finite rod with length \(L\) in Fig. 9b. The axial waves existing in the rod are non-dispersive, so the axial displacement at any point \(x\) comprises only the propagating waves:

$$U\left(x\right)={B}_{1}{e}^{-i{k}_{l}x}+{B}_{2}{e}^{i{k}_{l}x}$$
(35)

where \({k}_{l}={\left(\rho /E\right)}^{1/2}\omega\) is the axial wavenumber and \({B}_{1}\) and \({B}_{2}\) are the complex magnitudes of the propagating waves in both directions. The force and velocity vectors \({\mathbf{f}}_{\mathbf{x}}={{{\text{F}}_{{\rm x}1} {\text{F}}_{{\rm x}2}}}^{{\rm T}}\) and \({\mathbf{v}}_{\mathbf{x}}={{{\dot{U}}_{\text{1}}{\dot{U}}_{\text{2}}}}^{\text{T}}\) comprise the axial forces and velocities at the two ends.

$${\mathbf{f}}_{\mathbf{x}}={\mathbf{Z}}_{\mathbf{r}\mathbf{o}\mathbf{d}}{\mathbf{v}}_{\mathbf{x}}=\left[\begin{array}{ll}{Z}_{11}& {Z}_{12}\\ {Z}_{21}& {Z}_{22}\end{array}\right]\left\{\begin{array}{l}{\dot{U}}_{\text{1}}\\ {\dot{U}}_{\text{2}}\end{array}\right\}$$
(36)

where \({Z}_{11}=-{Z}_{22}=-jS\sqrt{E\rho }\mathrm{cot}\left({k}_{l}L\right),{Z}_{12}={-Z}_{21}=jS\sqrt{E\rho }/\mathrm{sin}\left({k}_{l}L\right)\).

The expressions for the impedance matrices are the same as those directly given by (Gardonio and Brennan [28]), where the procedure of obtaining these impedance matrices was not presented. This section validates the consistency between the wave approach and impedance matrix formulation.

Appendix C: Beam mobility formulation

The mobility formulation of the cantilevered host beam will be introduced with both axial and flexural motions being considered. The mobility matrix representing the transmission from the force vector at \({x}_{i}\) to the velocity vector at \({x}_{j}\) is given through the modal superposition (Gardonio and Brennan [28]) as:

$${\mathbf{Y}}_{\mathbf{i}\mathbf{j}}=\left[\begin{array}{lll}{Y}_{{\dot{W}}_{j}{S}_{i}}& {Y}_{{\dot{W}}_{j}{M}_{i}}& 0\\ {Y}_{{\dot{\theta }}_{j}{S}_{i}}& {Y}_{{\dot{\theta }}_{j}{M}_{i}}& 0\\ 0& 0& {Y}_{{\dot{U}}_{j}{M}_{i}}\end{array}\right]$$
(37)
$$\begin{aligned} & Y_{{\dot{\theta }_{j} S_{i} }} = \mathop \sum \limits_{{n = 1}}^{\infty } \frac{{i\omega \Psi _{n}^{{\text{'}}} \left( {x_{j} } \right)\Psi _{n} \left( {x_{i} } \right)}}{{\rho SL\left[ {\omega _{n}^{2} \left( {1 + j\eta } \right) - \omega ^{2} } \right]}},\quad Y_{{\dot{\theta }_{j} M_{i} }} = \mathop \sum \limits_{{n = 1}}^{\infty } \frac{{i\omega \Psi _{n}^{{\text{'}}} \left( {x_{j} } \right)\Psi _{n}^{{\text{'}}} \left( {x_{i} } \right)}}{{\rho SL\left[ {\omega _{n}^{2} \left( {1 + j\eta } \right) - \omega ^{2} } \right]}} \\ & Y_{{\dot{W}_{j} S_{i} }} = \mathop \sum \limits_{{n = 1}}^{\infty } \frac{{i\omega \Psi _{n} \left( {x_{i} } \right)\Psi _{n} \left( {x_{j} } \right)}}{{\rho SL\left[ {\omega _{n}^{2} \left( {1 + j\eta } \right) - \omega ^{2} } \right]}},\quad Y_{{\dot{W}_{j} M_{i} }} = \mathop \sum \limits_{{n = 1}}^{\infty } \frac{{i\omega \Psi _{n}^{'} \left( {x_{i} } \right)\Psi _{n} \left( {x_{j} } \right)}}{{\rho SL\left[ {\omega _{n}^{2} \left( {1 + j\eta } \right) - \omega ^{2} } \right]}}, \\ & Y_{{\dot{U}_{j} F_{{xi}} }} {\text{ = }}\mathop \sum \limits_{{m = 1}}^{\infty } \frac{{i\omega \varphi _{m} \left( {x_{i} } \right)\varphi _{m} \left( {x_{j} } \right)}}{{\rho SL\left[ {{{\Omega }}_{m}^{2} \left( {1 + j\eta } \right) - \omega ^{2} } \right]}}, \\ \end{aligned}$$
(38)

where \({\Psi }_{n}\left(x\right)\) and \({\omega }_{n}\) are the \({n}^{th}\) modal shape function and the natural frequency of a cantilevered beam, respectively, and \({\varphi }_{m}\left(x\right)\) and \({{\Omega }}_{m}\) are the \({m}^{th}\) modal shape function and the natural frequency of a fixed-free rod, respectively. The hysteresis damping ratio \(\eta\) is assumed to be material damping. It is set to zero in the main content.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hua, Y., Rustighi, E., Cheng, L. et al. Theoretical analysis of the energy conversion and vibration control characteristics of a slanted beam termination. Meccanica 56, 2599–2612 (2021). https://doi.org/10.1007/s11012-021-01389-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-021-01389-1

Keywords

Navigation