Skip to main content
Log in

A modified beam model based on Gurtin–Murdoch surface elasticity theory

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

In this work, a modified surface-effect incorporated beam model based on Gurtin and Murdoch (GM) surface elasticity theory is established by satisfying the required balance equations on surfaces, which is often overlooked by researchers in this field. With the refinement, the proposed model is more rigorous in mathematics and mechanics compared with GM theory-based beam models in literature. To demonstrate the model, the problem for static bending of simply supported beam considering surface effects is solved by applying the general equations derived, and numerical results are obtained and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ekinci KL, Roukes ML (2005) Nanoelectromechanical systems. Rev Sci Instrum 76:061101

    Article  Google Scholar 

  2. Eoma K, Park HS, Yoon DS, Kwon T (2011) Nanomechanical resonators and their applications in biological/chemical detection: nanomechanics principles. Phys Rep 503:115–163

    Article  Google Scholar 

  3. Poot M, van der Zant HSJ (2012) Mechanical systems in the quantum regime. Phys Rep 511:273–335

    Article  Google Scholar 

  4. Zhang WM, Yan H, Peng ZK, Meng G (2014) Electrostatic pull-in instability in MEMS/NEMS: a review. Sens Actuator A Phys 214:187–218

    Article  Google Scholar 

  5. Wong EW, Sheehan PE, Lieber CM (1997) Nanobeam mechanics: elasticity, strength, and toughness of nanorods and nanotubes. Science 277:1971–1975

    Article  Google Scholar 

  6. Cuenot S, Fretigny C, Demoustier-Champagne S, Nysten B (2004) Surface tension effect on the mechanical properties of nanomaterials measured by atomic force microscopy. Phys Rev B 69:165410

    Article  Google Scholar 

  7. Lu P, Lee HP, Lu C, O’Shea SJ (2005) Surface stress effects on the resonance properties of cantilever sensors. Phys Rev B 72:085405

    Article  Google Scholar 

  8. Gavan KB, Westra HJR, Venstra WJ, van der Drift EWJM, van der Zant HSJ (2009) Size-dependent effective Young’s modulus of silicon nitride cantilevers. Appl Phys Lett 94:233108

    Article  Google Scholar 

  9. Yu P, Yu S, Zhou W (2015) Evaluation of thermal performance of graphene overcoat on multi-layered structure subject to laser heating. Int Commun Heat Mass 68:27–31

    Article  Google Scholar 

  10. Gurtin ME, Murdoch AI (1975) A continuum theory of elastic material surfaces. Arch Rat Mech Anal 57:291–323

    Article  MathSciNet  Google Scholar 

  11. Gurtin ME, Murdoch AI (1975) Addenda to our paper: a continuum theory of elastic material surfaces. Arch Rat Mech Anal 59:389–390

    Article  Google Scholar 

  12. Gurtin ME, Murdoch AI (1978) Surface stress in solids. Int J Solids Struct 14:431–440

    Article  Google Scholar 

  13. Miller RE, Shenoy VB (2000) Size-dependent elastic properties of nanosized structural elements. Nanotechnology 11:139–147

    Article  Google Scholar 

  14. Lim CW, He LH (2004) Size-dependent nonlinear response of thin elastic films with nano-scale thickness. Int J Mech Sci 46:1715–1726

    Article  Google Scholar 

  15. Lu P, He LH, Lee HP, Lu C (2006) Thin plate theory including surface effects. Int J Solids Struct 43:4631–4647

    Article  Google Scholar 

  16. Lü CF, Lim CW, Chen WQ (2009) Size-dependent elastic behavior of FGM ultra-thin films based on generalized refined theory. Int J Solids Struct 46:1176–1185

    Article  Google Scholar 

  17. Lü CF, Chen WQ, Lim CW (2009) Elastic mechanical behavior of nano-scaled FGM films incorporating surface energies. Compos Sci Technol 69:1124–1130

    Article  Google Scholar 

  18. Liu C, Rajapakse RKND (2010) Continuum models incorporating surface energy for static and dynamic response of nanoscale beams. IEEE Trans Nanotechnol 9(4):422–431

    Article  Google Scholar 

  19. Hosseini-Hashemi S, Nazemnezhad R, Bedroud M (2014) Surface effects on nonlinear free vibration of functionally graded nanobeams using nonlocal elasticity. Appl Math Model 38:3538–3553

    Article  MathSciNet  Google Scholar 

  20. Kambali PN, Nikhil VS, Pandey AK (2017) Surface and nonlocal effects on response of linear and nonlinear NEMS devices. Appl Math Model 43:252–267

    Article  MathSciNet  Google Scholar 

  21. Thai H-T, Vo TP, Nguyen T-K, Kim S-E (2017) A review of continuum mechanics models for size-dependent analysis of beams and plates. Compos Struct 177:196–219

    Article  Google Scholar 

  22. Sapsathiarn Y, Rajapakse RKND (2018) Mechanistic models for nanobeams with surface stress effects. J Eng Mech 144:04018098

    Article  Google Scholar 

  23. Attia MA, Rahman AAA (2018) On vibrations of functionally graded viscoelastic nanobeams with surface effects. Int J Eng Sci 127:1–32

    Article  MathSciNet  Google Scholar 

  24. Lu L, Guo XM, Zhao JZ (2018) On the mechanics of Kirchhoff and Mindlin plates incorporating surface energy. Int J Eng Sci 124:24–40

    Article  MathSciNet  Google Scholar 

  25. Zhou SS, Zhang RM, Zhou SJ, Li AQ (2019) Free vibration analysis of bilayered circular micro-plate including surface effects. Appl Math Model 70:54–66

    Article  MathSciNet  Google Scholar 

  26. Timoshenko S, Woinowsky-Krieger S (1959) Theory of plates and shells. McGraw-Hill Book Co, New York

    MATH  Google Scholar 

  27. Reddy JN (1984) A simple higher-order theory for laminated composite plates. ASME J Appl Mech 51:6433–6456

    Article  Google Scholar 

  28. Gao XL, Zhang GY (2015) A microstructure-and surface energy-dependent third-order shear deformation beam model. Z Angew Math Phys 66(4):1871–1894

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pin Lu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: The third-order beam relations without considering continuous surface shear stress

Appendix: The third-order beam relations without considering continuous surface shear stress

Start from Eq. (21) without considering surface shear stress continuum.

$$\begin{aligned} u_{x} & = u + \left[ {\psi - \frac{4}{{3h^{2} }}\left( {w_{{,x}} + \psi } \right)z^{2} } \right]z, \\ u_{z} & = w, \\ \end{aligned}$$
(53)

which are just the displacements assumed for the classical beam model [27]. The corresponding equations of motion incorporating surface effects are given by

$$\begin{aligned} & N_{{xx,x}}^{{**}} + r_{x}^{{\left( 0 \right)}} = \int_{{ - h/2}}^{{h/2}} \rho \ddot{u}_{x} {\text{d}}z + \rho _{0} \left( {\ddot{u}_{x}^{ + } + \ddot{u}_{x}^{ - } } \right), \\ & N_{{xz,x}}^{{**}} + p + r_{z}^{{\left( 0 \right)}} + \frac{4}{{3h^{2} }}\left( {P_{{xx,xx}}^{{**}} - 3R_{{xz,x}} + r_{{x,x}}^{{\left( 3 \right)}} } \right) \\ & \quad = \int_{{ - h/2}}^{{h/2}} \rho \left( {\ddot{u}_{z} + \frac{4}{{3h^{2} }}\ddot{u}_{{x,x}} z^{3} } \right){\text{d}}z + \rho _{0} \left[ {\left( {\ddot{u}_{z}^{ + } + \ddot{u}_{z}^{ - } } \right) + \frac{h}{6}\left( {\ddot{u}_{{x,x}}^{ + } - \ddot{u}_{{x,x}}^{ - } } \right)} \right], \\ & M_{{xx,x}}^{{**}} - N_{{xz}} + r_{x}^{{\left( 1 \right)}} - \frac{4}{{3h^{2} }}\left( {P_{{xx,x}}^{{**}} - 3R_{{xz}} + r_{x}^{{\left( 3 \right)}} } \right) \\ & \quad = \int_{{ - h/2}}^{{h/2}} \rho \ddot{u}_{x} \left( {z - \frac{4}{{3h^{2} }}z^{3} } \right){\text{d}}z + \frac{h}{3}\rho _{0} \left( {\ddot{u}_{x}^{ + } - \ddot{u}_{x}^{ - } } \right), \\ \end{aligned}$$
(54)

with the associated boundary conditions are prescribed as follows:

$$u\;{\text{or}}\;N_{{xx}}^{{**}} ,w\;{\text{or}}\;N_{{xz}}^{{**}} ,\psi \;{\text{or}}\;M_{{xx}}^{{**}} - \frac{4}{{3h^{2} }}P_{{xx}}^{{**}} ,w_{{,x}} \;{\text{or}}\;P_{{xx}}^{{**}} .$$
(55)

It is noted that although the extended resultant forces including the surface stress effects with two asterisk superscripts in Eqs. (54) and (55) have the same form as given in Eq. (7), the stress components are determined based on the displacements Eq. (53) but not Eq. (21).

For static cylindrical bending, and the body forces are not considered, the governing equations in Eq. (54) are reduced to

$$\begin{aligned} & N_{{xx,x}}^{{**}} = 0, \\ & N_{{xz,x}}^{{**}} + p + \frac{4}{{3h^{2} }}\left( {P_{{xx,xx}}^{{**}} - 3R_{{xz,x}} } \right) = 0, \\ & M_{{xx,x}}^{{**}} - N_{{xz}} - \frac{4}{{3h^{2} }}\left( {P_{{xx,x}}^{{**}} - 3R_{{xz}} } \right) = 0. \\ \end{aligned}$$
(56)

The resultant forces determined based on the displacements Eq. (53) are given by

$$\begin{array}{l}{N}_{xx}=\frac{2\mu h}{1-\nu }{u}_{,x}, {N}_{xz}=\frac{\mu h}{3}\left(2{w}_{,x}+2\psi \right), {M}_{xz}=0 , \\ {M}_{xx}=\frac{\mu {h}^{3}}{6\left(1-\nu \right)}\left(\left(\frac{{l}_{1\nu }}{h}-\frac{1}{5}\right){w}_{,xx}+\frac{4}{5}{\psi }_{,x}\right), {R}_{xx}=\frac{\mu {h}^{3}}{6\left(1-\nu \right)}{u}_{,x}, \\ {R}_{xz}=\frac{\mu {h}^{3}}{30}\left({w}_{,x}+\psi \right), {P}_{xx}=\frac{\mu {h}^{5}}{40\left(1-\nu \right)}\left[\left(\frac{{l}_{1\nu }}{h}-\frac{5}{21}\right){w}_{,xx}+\frac{16}{21}{\psi }_{,x}\right],\end{array}$$
(57)

and

$$\begin{array}{l}{N}_{xx}^{**}=2{\tau }_{0}+\frac{2\mu h}{1-\nu }\left(1+\frac{{l}_{0\nu }}{h}\right){u}_{,x}, {N}_{xz}^{**}=\frac{2\mu h}{3}\left[\left(1+\frac{3{l}_{1}}{h}\right){w}_{,x}+\psi \right], \\ {M}_{xx}^{**}=\frac{\mu {h}^{3}}{6\left(1-\nu \right)}\left[\left(\frac{{l}_{1\nu }-{l}_{0\nu }}{h}-\frac{1}{5}\right){w}_{,xx}+2\left(\frac{2}{5}+\frac{{l}_{0\nu }}{h}\right){\psi }_{,x}\right], \\ {R}_{xx}^{**}=\frac{{h}^{2}}{2}{\tau }_{0}+\frac{\mu {h}^{3}}{6\left(1-\nu \right)}\left(1+\frac{3{l}_{0\nu }}{h}\right){u}_{,x}, \\ {P}_{xx}^{**}=\frac{\mu {h}^{5}}{40\left(1-\nu \right)}\left[\left(\frac{{l}_{1\nu }}{h}-\frac{5}{3}\frac{{l}_{0\nu }}{h}-\frac{5}{21}\right){w}_{,xx}+\frac{10}{3}\left(\frac{8}{35}+\frac{{l}_{0\nu }}{h}\right) {\psi }_{,x}\right],\end{array}$$
(58)

where the parameters \({l}_{0}\), \({l}_{1}\), \({l}_{0\nu }\) and \({l}_{1\nu }\) are defined in Eq. (31).

By substituting Eqs. (57) and (58) in to Eq. (56), the governing equations can be expressed in terms of the displacements as

$$\begin{array}{l}\frac{2\mu h}{1-\nu }\left(1+\frac{{l}_{0\nu }}{h}\right){u}_{,xx}=0, \\ \frac{8}{15}\mu h\left[\left(1+\frac{15}{4}\frac{{l}_{1}}{h}\right){w}_{,xx}+{\psi }_{,x}\right] \\ -\frac{\mu {h}^{3}}{126\left(1-\nu \right)}\left[\left(1+7\frac{{l}_{0\nu }}{h}-\frac{21}{5}\frac{{l}_{1\nu }}{h}\right){w}_{,xxxx}-\frac{16}{5}\left(1+\frac{35}{8}\frac{{l}_{0\nu }}{h}\right){\psi }_{,xxx}\right]+p=0,\\ \mu h\left({w}_{,x}+\psi \right)+\frac{\mu {h}^{3}}{21\left(1-\nu \right)}\left[\left(1+7\frac{{l}_{0\nu }}{h}-\frac{21}{4}\frac{{l}_{1\nu }}{h}\right){w}_{,xxx}-\frac{17}{4}\left(1+\frac{35}{17}\frac{{l}_{0\nu }}{h}\right){\psi }_{,xx}\right]=0.\end{array}$$
(59)

For the static bending with the simply supported boundary conditions, the displacements Eq. (53) can be written as

$$u={U}^{**}\mathrm{cos}{q}_{n}x, w={W}^{**}\mathrm{sin}{q}_{n}x, \psi ={\Psi }^{**}\mathrm{cos}{q}_{n}x,$$
(60)

where \({q}_{n}=n\pi /l\) with n being a positive integral, and \({U}^{**}\), \({W}^{**}\) and \({\Psi }^{**}\) indicate maximal values of the displacement components.

By substituting Eq. (60) and the transverse loading \(p={P}_{0}\mathrm{sin}{q}_{n}x\) to Eq. (59), the first Eq. in Eq. (59) gives \({U}^{**}=0\), and \({W}^{**}\) and \({\Psi }^{**}\) can be determined by the relations

$${W}^{**}=\frac{{a}_{22}^{**}}{{a}_{11}^{**}{a}_{22}^{**}-{a}_{12}^{**}{a}_{21}^{**}}{P}_{0}, {\Psi }^{**}=-\frac{{a}_{21}^{**}}{{a}_{11}^{**}{a}_{22}^{**}-{a}_{12}^{**}{a}_{21}^{**}}{P}_{0} ,$$
(61)

where

$$\begin{array}{l}{a}_{11}^{**}=\frac{8}{15}\mu h\left(1+\frac{15}{4}\frac{{l}_{1}}{h}\right){q}_{n}^{2}+\frac{\mu {h}^{3}}{126\left(1-\nu \right)}\left(1+7\frac{{l}_{0\nu }}{h}-\frac{21}{5}\frac{{l}_{1\nu }}{h}\right){q}_{n}^{4}, \\ {a}_{12}^{**}=\frac{8}{15}\mu h{q}_{n}-\frac{8\mu {h}^{3}}{315\left(1-\nu \right)}\left(1+\frac{35}{8}\frac{{l}_{0\nu }}{h}\right){q}_{n}^{3}, \\ {a}_{21}^{**}=\frac{8}{15}\mu h{q}_{n}-\frac{8\mu {h}^{3}}{315\left(1-\nu \right)}\left(1+7\frac{{l}_{0\nu }}{h}-\frac{21}{4}\frac{{l}_{1\nu }}{h}\right){q}_{n}^{3}, \\ {a}_{22}^{**}=\frac{8}{15}\mu h+\frac{34\mu {h}^{3}}{315\left(1-\nu \right)}\left(1+\frac{35}{17}\frac{{l}_{0\nu }}{h}\right){q}_{n}^{2},\end{array}$$
(62)

Define \(s=l/h\) to be the length-to-thickness ratio of the beam, and considering \(n=1\) for \({q}_{n}\), Eq. (62) can be rewritten as

$${a}_{11}^{**}=\frac{\mu }{h}{\bar{a}}_{11}^{**}, {a}_{12}^{**}=\mu {\bar{a}}_{12}^{**}, {a}_{21}^{**}=\mu {\bar{a}}_{21}^{**}, {a}_{22}^{**}=\mu h{\bar{a}}_{22}^{**},$$
(63)

where

$$\begin{array}{l}{\bar{a}}_{11}^{**}=\frac{8}{15}\left(1+\frac{15}{4}\frac{{l}_{1}}{h}\right){\left(\frac{\pi }{s}\right)}^{2}+\frac{1}{126\left(1-\nu \right)}\left(1+7\frac{{l}_{0\nu }}{h}-\frac{21}{5}\frac{{l}_{1\nu }}{h}\right){\left(\frac{\pi }{s}\right)}^{4}, \\ {\bar{a}}_{12}^{**}=\frac{8}{15}\left(\frac{\pi }{s}\right)-\frac{8}{315\left(1-\nu \right)}\left(1+\frac{35}{8}\frac{{l}_{0\nu }}{h}\right){\left(\frac{\pi }{s}\right)}^{3}, \\ {\bar{a}}_{21}^{**}=\frac{8}{15}\left(\frac{\pi }{s}\right)-\frac{8}{315\left(1-\nu \right)}\left(1+7\frac{{l}_{0\nu }}{h}-\frac{21}{4}\frac{{l}_{1\nu }}{h}\right){\left(\frac{\pi }{s}\right)}^{3}, \\ {\bar{a}}_{22}^{**}=\frac{8}{15}+\frac{34}{315\left(1-\nu \right)}\left(1+\frac{35}{17}\frac{{l}_{0\nu }}{h}\right){\left(\frac{\pi }{s}\right)}^{2},\end{array}$$
(64)

are non-dimensional values. The displacement amplitudes in Eq. (61) can thus be expressed in terms of the non-dimensional form \({\bar{W}}^{**}\) and \({\bar{\Psi }}^{**}\) as

$$W^{{**}} = \frac{{hP_{0} }}{\mu }\bar{W}^{{**}} ,\Psi ^{{**}} = \frac{{P_{0} }}{\mu }\bar{\Psi }^{{**}} ,$$
(65)

where

$$\bar{W}^{{**}} = \frac{{\bar{a}_{{22}}^{{**}} }}{{\bar{a}_{{11}}^{{**}} \bar{a}_{{22}}^{{**}} - \bar{a}_{{12}}^{{**}} \bar{a}_{{21}}^{{**}} }},\bar{\Psi }^{{**}} = - \frac{{\bar{a}_{{21}}^{{**}} }}{{\bar{a}_{{11}}^{{**}} \bar{a}_{{22}}^{{**}} - \bar{a}_{{12}}^{{**}} \bar{a}_{{21}}^{{**}} }}.$$
(66)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, P., Liu, R., Zhai, H. et al. A modified beam model based on Gurtin–Murdoch surface elasticity theory. Meccanica 56, 1147–1164 (2021). https://doi.org/10.1007/s11012-021-01312-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-021-01312-8

Keywords

Navigation