Skip to main content
Log in

Steady-state responses of mechanical system attached to non-smooth vibration absorber with piecewise damping and stiffness

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

The steady-state dynamic characteristics of non-smooth vibration absorbers are investigated. The complexification-averaging method is used to obtain the steady-state response equation of a harmonic excited primary system attached to the non-smooth absorbers, with the equation solved using a Matlab program based on the least square method. Research results indicate that the traditional purely nonlinear absorber loses its efficacy after the excitation amplitude reaches a certain value. The non-smooth absorber with piecewise linear damping, by contrast, can suppress vibration of the primary system within a larger range of excitation amplitude than the purely nonlinear absorber. Then, the cubic stiffness component is substituted by a piecewise stiffness component to further enhance the performance of the above non-smooth absorber and good results are obtained. The non-smooth absorber with both piecewise damping and stiffness shows the stronger vibration absorption performance. In addition, the differences of higher branches of response which induced by the three absorbers are analyzed and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Hartog JPD (1947) Mechanical Vibrations. McGraw-Hill, New York

    MATH  Google Scholar 

  2. Abe M, Fujino Y (1994) Dynamic characterization of multiple tuned mass dampers and some design formulas. Earthq Eng Struct D 23(8):813–835

    Article  Google Scholar 

  3. Roberson RE (1952) Synthesis of a nonlinear dynamic vibration absorber. J Franklin I 254(3):205–220

    Article  MathSciNet  Google Scholar 

  4. Oueini SS, Chin CM, Nayfeh AH (1999) Dynamics of a cubic nonlinear vibration absorber. Nonlinear Dyn 20(3):283–295

    Article  MATH  Google Scholar 

  5. Vakakis AF (2001) Inducing passive nonlinear energy sinks in vibrating systems. J Vib Acoust 123(3):324–332

    Article  Google Scholar 

  6. Lee YS, Vakakis AF, Bergman LA, McFarland DM, Kerschen G, Nucera F, Tsakirtzis S, Panagopoulos PN (2008) Passive non-linear targeted energy transfer and its applications to vibration absorption: a review. P I Mech Eng K-J Mul 222(2):77–134

    Google Scholar 

  7. Lu Z, Wang ZX, Zhou Y, Lu XL (2018) Nonlinear dissipative devices in structural vibration control: a review. J Sound Vib 423:18–49

    Article  Google Scholar 

  8. Ding H, Chen LQ (2020) Designs, analysis and applications of nonlinear energy sinks. Nonlinear Dyn 100(4):3061–3107

    Article  Google Scholar 

  9. Li T, Seguy S, Berlioz A (2017) On the dynamics around targeted energy transfer for vibro-impact nonlinear energy sink. Nonlinear Dyn 87(3):1453–1466

    Article  Google Scholar 

  10. Gourc E, Seguy S, Michon G, Berlioz A, Man BP (2015) Quenching chatter instability in turning process with a vibro-impact nonlinear energy sink. J Sound Vib 355:392–406

    Article  Google Scholar 

  11. M.A. AL-Shudeifat, A.S. Saeed, Comparison of a modified vibro-impact nonlinear energy sink with other kinds of NESs, Meccanica. DOI: https://doi.org/10.1007/s11012-020-01193-3, 2020.

  12. Sarlis AA, Pasala DTR, Constantinou MC, Reinhorn AM, Nagarajaiah S, Taylor DP (2013) Negative stiffness device for seismic protection of structures. J Struct Eng 139(7):1124–1133

    Article  Google Scholar 

  13. Sun Y, Zhou JS, Gong D, Sun WJ (2018) Two dimensional dynamic vibration absorber of high speed electric multiple unit (EMU) train based on negative stiffness. J Tongji Univ 46(6):854–860

    Google Scholar 

  14. Georgiades F, Vakakis AF, Mcfarland DM, Bergman LA (2005) Shock isolation through passive energy pumping caused by nonsmooth nonlinearities. Int J Bifurcat Chaos 15(6):1989–2001

    Article  Google Scholar 

  15. Gendelman OV (2008) Targeted energy transfer in systems with non-polynomial nonlinearity. J Sound Vib 315(3):732–745

    Article  Google Scholar 

  16. Lamarque CH, Gendelman OV, Savadkoohi AT, Etcheverria E (2011) Targeted energy transfer in mechanical systems by means of non-smooth nonlinear energy sink. Acta Mech 221(1–2):175–200

    Article  MATH  Google Scholar 

  17. Starosvetsky Y, Gendelman OV (2009) Vibration absorption in systems with a nonlinear energy sink: Nonlinear damping. J Sound Vib 324(3–5):916–939

    Article  Google Scholar 

  18. Lamarque CH, Savadkoohi AT, Dimitrijevic Z (2014) Dynamics of a linear system with time-dependent mass and a coupled light mass with non-smooth potential. Meccanica 49(1):135–145

    Article  MathSciNet  MATH  Google Scholar 

  19. Lamarque CH, Savadkoohi AT, Charlemagne S, Abdoulhadi P (2017) Nonlinear vibratory interactions between a linear and a non-smooth forced oscillator in the gravitational field. Mech Syst and Signal Pr 89:131–148

    Article  Google Scholar 

  20. Shui X, Wang SM (2018) Investigation on a mechanical vibration absorber with tunable piecewise-linear stiffness. Mech Syst and Signal Pr 100:330–343

    Article  Google Scholar 

  21. Gendelman OV, Sigalov G, Manevitch LI, Mane M, Vakakis AF, Bergman LA (2012) Dynamics of an eccentric rotational nonlinear energy sink. J Appl Mech 79(1):011012

    Article  Google Scholar 

  22. M.A. AL-Shudeifat, Highly efficient nonlinear energy sink, Nonlinear Dyn. 76(4): 1905–1920, 2014.

  23. M.A. AL-Shudeifat, Asymmetric Magnet-Based Nonlinear Energy Sink, J Comput Nonlin Dyn. 10(1): 014502, 2015.

  24. M.A. AL-Shudeifat, N.E. Wierschem, L.A. Bergman, A.F. Vakakis, Numerical and experimental investigations of a rotating nonlinear energy sink, Meccanica. 52(4–5): 763–779, 2017.

  25. Benarous N, Gendelman OV (2016) Nonlinear energy sink with combined nonlinearities: Enhanced mitigation of vibrations and amplitude locking phenomenon. P I Mech Eng C-J Mec 230(1):21–33

    Article  Google Scholar 

  26. Fang X, Wen JH, Yin JF, Yu DL (2017) Highly efficient continuous bistable nonlinear energy sink composed of a cantilever beam with partial constrained layer damping. Nonlinear Dyn 87(4):2677–2695

    Article  Google Scholar 

  27. Farid M, Gendelman OV (2017) Tuned pendulum as nonlinear energy sink for broad energy range. J Vib Control 23(3):373–388

    Article  MathSciNet  Google Scholar 

  28. Tsiatas GC, Charalampakis AE (2018) A new hysteretic nonlinear energy sink (HNES). Commun Nonlinear Sci 60:1–11

    Article  MATH  Google Scholar 

  29. Habib G, Romeo F (2017) The tuned bistable nonlinear energy sink. Nonlinear Dyn 89(1):179–196

    Article  Google Scholar 

  30. Mattei PO, Poncot R, Pachebat M, Cote R (2016) Nonlinear targeted energy transfer of two coupled cantilever beams coupled to a bistable light attachment. J Sound Vib 373:29–51

    Article  Google Scholar 

  31. Wang JJ, Wierschem N, Spencer BF, Lu XL (2015) Experimental study of track nonlinear energy sinks for dynamic response reduction. Eng Struct. 94:9–15

    Article  Google Scholar 

  32. Zang J, Yuan TC, Lu ZQ, Zhang YW, Ding H, Chen LQ (2018) A lever-type nonlinear energy sink. J Sound Vib. 437:119–134

    Article  Google Scholar 

  33. Gourc E, Seguy S, Michon G, Berlioz A (2013) Chatter control in turning process with a nonlinear energy sink. Adv Mater R 698:89–98

    Google Scholar 

  34. Bab S, Khadem SE, Shahgholi M, Abbasi A (2017) Vibration attenuation of a continuous rotor-blisk-journal bearing system employing smooth nonlinear energy sinks. Mech Syst Signal PR 84:128–157

    Article  Google Scholar 

  35. Lee YS, Vakakis AF, Bergman LA, Mcfarland DM, Kerschen G (2007) Suppression aeroelastic instability using broadband passive targeted energy transfers, part 1: Theory. AIAA J 45(3):693–711

    Article  Google Scholar 

  36. Zhang WF, Liu Y, Cao SL, Chen JH, Zhang ZX, Zhang JZ (2017) Targeted energy transfer between 2-D wing and nonlinear energy sinks and their dynamic behaviors. Nonlinear Dyn 90(3):1841–1850

    Article  Google Scholar 

  37. Tian W, Li YM, Li P, Yang ZC, Zhao T (2019) Passive control of nonlinear aeroelasticity in hypersonic 3-D wing with a nonlinear energy sink. J Sound Vib 462:114942

    Article  Google Scholar 

  38. Yang K, Zhang YW, Ding H, Yang TZ, Li Y, Chen LQ (2017) Nonlinear energy sink for whole-spacecraft vibration reduction. J Vib Acoust 139(2):021011

    Article  Google Scholar 

  39. Chen HY, Mao XY, Ding H, Chen LQ (2020) Elimination of multimode resonances of composite plate by inertial nonlinear energy sinks. Mech Syst Signal PR 135:106383

    Article  Google Scholar 

  40. Tumkur RKR, Domany E, Gendelman OV, Masud A, Bergman LA, Vakakis AF (2013) Reduced-order model for laminar vortex-induced vibration of a rigid circular cylinder with an internal nonlinear absorber. Commun Nonlinear Sci 18(7):1916–1930

    Article  MathSciNet  MATH  Google Scholar 

  41. Dai HL, Abdelkefi A, Wang L (2017) Vortex-induced vibrations mitigation through a nonlinear energy sink. Commun Nonlinear Sci 42:22–36

    Article  MATH  Google Scholar 

  42. Huang DM, Li RH, Yang GD (2019) On the dynamic response regimes of a viscoelastic isolation system integrated with a nonlinear energy sink. Commun Nonlinear Sci 79:104916

    Article  MathSciNet  MATH  Google Scholar 

  43. Zhang W, Niu Y, Behdinan K (2020) Vibration characteristics of rotating pretwisted composite tapered blade with graphene coating layers. Aerosp Sci Technol 98:105644

    Article  Google Scholar 

  44. Bai B, Li H, Zhang W, Cui YC (2020) Application of extremum response surface method-based improved substructure component modal synthesis in mistuned turbine bladed disk. J Sound Vib 472:115210

    Article  Google Scholar 

  45. Guo XY, Jiang P, Cao DX, Wang CM (2020) Nonlinear vibrations of graphene piezoelectric microsheet under coupled excitations. Int J Nonlin Mech 124:103498

    Article  Google Scholar 

  46. Ahmadabadi ZN, Khadem SE (2014) Nonlinear vibration control and energy harvesting of a beam using a nonlinear energy sink and a piezoelectric device. J Sound Vib 333(19):4444–4457

    Article  Google Scholar 

  47. Li X, Zhang YW, Ding H, Chen LQ (2019) Dynamics and evaluation of a nonlinear energy sink integrated by a piezoelectric energy harvester under a harmonic excitation. J Vib Control 25(4):851–867

    Article  MathSciNet  Google Scholar 

  48. Zhang Y, Tang LH, Liu KF (2017) Piezoelectric energy harvesting with a nonlinear energy sink. J Intel Mat Syst Str 28(3):307–322

    Article  Google Scholar 

  49. Fang ZW, Zhang YW, Li X, Ding H, Chen LQ (2017) Integration of a nonlinear energy sink and a giant magnetostrictive energy harvester. J Sound Vib 391:35–49

    Article  Google Scholar 

  50. Gendelman OV (2011) Targeted energy transfer in systems with external and self-excitation. P I MECH ENG C-J MEC 225(C9):2007–2043

    Article  Google Scholar 

  51. Chen JE, He W, Zhang W, Yao MH, Liu J, Sun M (2018) Vibration suppression and higher branch responses of beam with parallel nonlinear energy sinks. Nonlinear Dyn 91(2):885–904

    Article  Google Scholar 

  52. Gourc E, Michon G, Seguy S, Berlioz A (2014) Experimental investigation and design optimization of targeted energy transfer under periodic forcing. J Vib Acoust 136(2):021021

    Article  Google Scholar 

  53. M.A. AL-Shudeifat, Piecewise nonlinear energy sink, IDETC/CIE 2015. 57181: V008T13A038, 2015.

  54. M.A. AL-Shudeifat, Nonlinear energy sinks with piecewise-linear nonlinearities, J Comput Nonlin Dyn. 14(12): 124501, 2019.

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of China (Nos. 11872274, 11402165, 11832002 and 11702188).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian-en Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, M., Hu, Wh., Liu, J. et al. Steady-state responses of mechanical system attached to non-smooth vibration absorber with piecewise damping and stiffness. Meccanica 56, 275–285 (2021). https://doi.org/10.1007/s11012-020-01288-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-020-01288-x

Keywords

Navigation