Skip to main content

Development of a Tuning Algorithm for a DynamicVibration Absorber with a Variable-Stiffness Property

  • Conference paper
  • First Online:
Vibration Engineering for a Sustainable Future

Abstract

In this study, we propose a frequency estimation method based on an adaptive line enhancer algorithm to be used for changing the property of the frequency-tunable dynamic vibration absorber. This method estimates the frequency from the time series of the delayed input signal, focusing on the fact that the autocorrelation function of noise converges rapidly to zero when the phase difference for several sampling periods is set. An elastomer composite with controllable stiffness, known as a magnetorheological elastomer, is used in a dynamic vibration absorber whose natural frequency is tuned adaptively to the disturbance frequency through the application of an external magnetic field. Firstly, we explain the structure of a variable-stiffness absorber and the mechanism of the proposed frequency tuning algorithm. Secondly, the test result of the absorber properties, namely, the natural frequency and damping ratio, is shown. By taking full advantage of the frequency adjustability of the proposed vibration absorber, we then evaluated the real-time vibration control performance for an acoustically excited plate having multiple resonant peaks. The sweep excitation tests show that the vibration of the structure can be effectively reduced with an improved performance by using the adaptive-tuned dynamic vibration absorber to be used with the proposed frequency estimation algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sun, S., Deng, H., Yang, L., Li, W., Du, H., Alici, G., Nakano, M.: An adaptive tuned vibration absorber based on multilayered MR elastomers. Smart Mater. Struct. 24(4), 045045 (2015)

    Article  Google Scholar 

  2. Komatsuzaki, T., Inoue, T., Terashima, O.: Broadband vibration control of a structure by using a magnetorheological elastomer-based tuned dynamic absorber. Mechatronics. 40, 28–136 (2016)

    Article  Google Scholar 

  3. Chertovich, A.V., Stepanov, G.V., Kramarenko, E.Y., Khokhlov, A.R.: New composite elastomers with giant magnetic response. Macromol. Mater. Eng. 294(5), 336–341 (2010)

    Article  Google Scholar 

  4. Hush, D., Ahmed, R., David, R., Stearns, S.: An adaptive IIR structure for sinusoidal enhancement, frequency estimation, and detection. IEEE Trans. Acoust. Speech Signal Process. 34(6), 1380–1390 (1986)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshihiko Komatsuzaki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kawai, T., Komatsuzaki, T., Asanuma, H. (2021). Development of a Tuning Algorithm for a DynamicVibration Absorber with a Variable-Stiffness Property. In: Oberst, S., Halkon, B., Ji, J., Brown, T. (eds) Vibration Engineering for a Sustainable Future. Springer, Cham. https://doi.org/10.1007/978-3-030-48153-7_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-48153-7_36

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-48152-0

  • Online ISBN: 978-3-030-48153-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics