Skip to main content
Log in

Fatigue analysis of structures with interval axial stiffness subjected to stationary stochastic excitations

  • Stochastics and Probability in Engineering Mechanics
  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

The fatigue analysis of linear discretized structures with uncertain axial stiffnesses modeled as interval variables subjected to stationary multi-correlated Gaussian stochastic excitation is addressed. Due to uncertainty, all response quantities, including the expected fatigue life, are described by intervals. The key idea is to extend an empirical spectral approach proposed by Benasciutti and Tovo (Probab Eng Mech 21(4):287–299, 2006. https://doi.org/10.1016/j.probengmech.2005.10.003), called \( \alpha_{0.75}^{{}} \)-method, to the interval framework. According to this approach, the expected fatigue life depends on four interval spectral moments of the critical stress process. Within the interval framework, the range of the interval expected fatigue life may be significantly overestimated by the classical interval analysis due to the dependency phenomenon which is particularly insidious for stress-related quantities. To limit the overestimation, a novel sensitivity-based procedure relying on a combination of the Interval Rational Series Expansion (Muscolino and Sofi in Mech Syst Signal Process 37(1–2):163–181, 2013. https://doi.org/10.1016/j.ymssp.2012.06.016) and the Improved Interval Analysis via Extra Unitary Interval (Muscolino and Sofi in Probab Eng Mech 28:152–163, 2012. https://doi.org/10.1016/j.probengmech.2011.08.011) is proposed. This procedure allows one to detect the combinations of the bounds of the interval axial stiffnesses which yield the lower bound and upper bound of the interval expected fatigue life. Sensitivity analysis is also exploited to identify the most influential uncertain parameters on the expected fatigue life. For validation purposes, a truss structure with uncertain axial stiffness under wind excitation is analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Benasciutti D, Tovo R (2006) Comparison of spectral methods for fatigue analysis of broad-band Gaussian random processes. Probab Eng Mech 21(4):287–299. https://doi.org/10.1016/j.probengmech.2005.10.003

    Article  MATH  Google Scholar 

  2. Muscolino G, Sofi A (2013) Bounds for the stationary stochastic response of truss structures with uncertain-but-bounded parameters. Mech Syst Signal Process 37(1–2):163–181. https://doi.org/10.1016/j.ymssp.2012.06.016

    Article  ADS  Google Scholar 

  3. Muscolino G, Sofi A (2012) Stochastic analysis of structures with uncertain-but-bounded parameters via improved interval analysis. Probab Eng Mech 28:152–163. https://doi.org/10.1016/j.probengmech.2011.08.011

    Article  Google Scholar 

  4. Repetto MP, Solari G (2010) Wind-induced fatigue collapse of real slender structures. Eng Struct 32:3888–3898. https://doi.org/10.1016/j.engstruct.2010.09.002

    Article  Google Scholar 

  5. Crandall SH, Mark WD (1963) Random Vibration in Mechanical Systems. Academic Press, New York

    Google Scholar 

  6. Dowling NE (1972) Fatigue failure predictions for complicated stress–strain histories. J Mater JMLSA 7(1):71–87

    Google Scholar 

  7. Rychlik I (1993) Note on cycle counts in irregular loads. Fatigue Fract Eng Mater Struct 16(4):377–390. https://doi.org/10.1111/j.1460-2695.1993.tb00094.x

    Article  Google Scholar 

  8. Lutes LD, Sarkani S (2004) Random vibrations: analysis of structural and mechanical system. Elsevier Butterworth-Heinemann, Massachusetts

    Google Scholar 

  9. Wirsching PH, Light CL (1980) Fatigue under wide band random stresses. J Struct Div ASCE 106(7):1593–1607

    Google Scholar 

  10. Dirlik T (1985) Application of computers in fatigue analysis. Ph.D. thesis, University of Warwick (UK)

  11. Lutes L, Larsen C (1990) Improved spectral method for variable amplitude fatigue prediction. J Struct Eng ASCE 116(4):1149–1164. https://doi.org/10.1061/(ASCE)0733-9445(1990)116:4(1149)

    Article  Google Scholar 

  12. Larsen C, Lutes L (1991) Predicting the fatigue life of offshore structures by the single-moment spectral method. Probab Eng Mech 6(2):96–108. https://doi.org/10.1016/0266-8920(91)90023-W

    Article  Google Scholar 

  13. Zhao W, Baker MJ (1992) On the probability density function of rainflow stress range for stationary Gaussian processes. Int J Fatigue 14(2):121–135. https://doi.org/10.1016/0142-1123(92)90088-T

    Article  Google Scholar 

  14. Tovo R (2002) Cycle distribution and fatigue damage under broad-band random loading. Int J Fatigue 24(11):1137–1147. https://doi.org/10.1016/S0142-1123(02)00032-4

    Article  MATH  Google Scholar 

  15. Benasciutti D, Tovo R (2005) Cycle distribution and fatigue damage assessment in broad-band non-Gaussian random processes. Probab Eng Mech 20(2):115–127. https://doi.org/10.1016/j.probengmech.2004.11.001

    Article  MATH  Google Scholar 

  16. Petrucci G, Zuccarello B (2014) Fatigue life prediction under wide band random loading. Fatigue Fract Engng Mater Struct 27:1183–1195. https://doi.org/10.1111/j.1460-2695.2004.00847.x

    Article  Google Scholar 

  17. Petrucci G, Di Paola M, Zuccarello B (2000) On the characterization of dynamic properties of random processes by spectral parameters. J Appl Mech Trans ASME 67(3):519–526. https://doi.org/10.1115/1.1312805

    Article  MathSciNet  MATH  Google Scholar 

  18. Larsen CE, Irvine T (2015) A review of spectral methods for variable amplitude fatigue prediction and new results. Procedia Eng 101:243–250. https://doi.org/10.1016/j.proeng.2015.02.034

    Article  Google Scholar 

  19. Sarkar S, Gupta S, Rychlik I (2011) Wiener chaos expansions for estimating rain-flow fatigue damage in randomly vibrating structures with uncertain parameters. Probab Eng Mech 26:387–398. https://doi.org/10.1016/j.probengmech.2010.09.002

    Article  Google Scholar 

  20. Faghihi D, Sarkar S, Naderi M, Rankin Jon E, Hackel L, Iyyer N (2018) A probabilistic design method for fatigue life of metallic component. ASCE-ASME J Risk Uncertainty Eng Syst Part B: Mech Eng 4:031005. https://doi.org/10.1115/1.4038372 (11 pages)

    Article  Google Scholar 

  21. Elishakoff I, Ohsaki M (2010) Optimization and anti-optimization of structures under uncertainty. Imperial College Press, London

    Book  MATH  Google Scholar 

  22. Moore RE (1966) Interval analysis. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  23. Moore RE, Kearfott RB, Cloud MJ (2009) Introduction to interval analysis. SIAM, Philadelphia

    Book  MATH  Google Scholar 

  24. Ben-Haim Y (1994) Fatigue lifetime with load uncertainty represented by convex model. J Eng Mech 3:445–462. https://doi.org/10.1061/(ASCE)0733-9399(1994)120:3(445)

    Article  Google Scholar 

  25. Qiu ZP, Lin Q, Wang XJ (2008) Convex models and probabilistic approach of nonlinear fatigue failure. Chaos Solitions Fractals 1:129–137. https://doi.org/10.1016/j.chaos.2006.06.015

    Article  ADS  MATH  Google Scholar 

  26. Sun WC, Yang ZC, Li KF (2013) Non-deterministic fatigue life analysis using convex set models. Sci China Phys Mech Astron 56(4):765–774. https://doi.org/10.1007/s11433-013-5023-7

    Article  ADS  Google Scholar 

  27. Berdai M, Tahan A, Gagnon M (2016) Imprecise probabilities in fatigue reliability assessment of hydraulic turbines. ASCE-ASME J Risk Uncertainty Eng Syst: Part B: Mech Eng 3(1):011006. https://doi.org/10.1115/1.4034690 (8 pages)

    Article  Google Scholar 

  28. Zhu Y, Tian Y (2018) Fatigue evaluation of linear structures with uncertain-but-bounded parameters under stochastic excitations. Int J Struct Stab Dyn 18(3):1850045. https://doi.org/10.1142/S0219455418500451 (32 pages)

    Article  MathSciNet  Google Scholar 

  29. Moens D, Vandepitte D (2005) A survey of non-probabilistic uncertainty treatment in finite element analysis. Comput Methods Appl Mech Eng 194(12–16):1527–1555. https://doi.org/10.1016/j.cma.2004.03.019

    Article  ADS  MATH  Google Scholar 

  30. Dong W, Shah H (1987) Vertex method for computing functions of fuzzy variables. Fuzzy Sets Syst 24:65–78. https://doi.org/10.1016/0165-0114(87)90114-X

    Article  MathSciNet  MATH  Google Scholar 

  31. Spanos PD, Sofi A, Wang J, Peng B (2006) A method for fatigue analysis of piping systems on topsides of FPSO structures. J Offshore Mech Arct Eng ASME 128(2):162–168. https://doi.org/10.1115/1.2185126

    Article  Google Scholar 

  32. Lutes LD, Corazao M, Hu S-IJ, Zimmerman J (1984) Stochastic fatigue damage accumulation. J Struct Eng 110(11):2585–2601. https://doi.org/10.1061/(ASCE)0733-9445(1984)110:11(2585)

    Article  Google Scholar 

  33. Fuchs MB (1997) Unimodal formulation of the analysis and design problems for framed structures. Comput Struct 63:739–747. https://doi.org/10.1016/S0045-7949(96)00064-8

    Article  MATH  Google Scholar 

  34. Li J, Chen JB (2009) Stochastic dynamics of structures. Wiley, Singapore

    Book  MATH  Google Scholar 

  35. Muscolino G, Santoro R, Sofi A (2014) Explicit sensitivities of the response of discretized structures under stationary random processes. Probab Eng Mech 35:82–95. https://doi.org/10.1016/j.probengmech.2013.09.006

    Article  Google Scholar 

  36. Muscolino G, Santoro R, Sofi A (2015) Explicit reliability sensitivities of linear structures with interval uncertainties under stationary stochastic excitations. Struct Saf 52(Part. B):219–232. https://doi.org/10.1016/j.strusafe.2014.03.001

    Article  Google Scholar 

  37. Muscolino G, Santoro R, Sofi A (2016) Reliability analysis of structures with interval uncertainties under stationary excitations. Comput Methods Appl Mech Eng 300:47–69. https://doi.org/10.1016/j.cma.2015.10.023

    Article  ADS  MathSciNet  MATH  Google Scholar 

  38. Sofi A, Romeo E (2016) A novel interval finite element method based on the improved interval analysis. Comput Methods Appl Mech Eng 311:671–697. https://doi.org/10.1016/j.cma.2016.09.009

    Article  ADS  MathSciNet  Google Scholar 

  39. Impollonia N, Muscolino G (2011) Interval analysis of structures with uncertain-but-bounded axial stiffness. Comput Methods Appl Mech Eng 200(21–22):1945–1962. https://doi.org/10.1016/j.cma.2010.07.019

    Article  ADS  MATH  Google Scholar 

  40. Vanmarcke EH (1972) Properties of spectral moments with applications to random vibration. J Eng Mech Div ASCE 98(2):425–446

    Google Scholar 

  41. Muscolino G, Santoro R, Sofi A (2014) Explicit frequency response functions of discretized structures with uncertain parameters. Comput Struct 133:64–78. https://doi.org/10.1016/j.compstruc.2013.11.007

    Article  Google Scholar 

  42. Łagoda T, Macha E, Pawliczek R (2001) The influence of the mean stress on fatigue life of 10HNAP steel under random loading. Int J Fatigue 23(4):283–291. https://doi.org/10.1016/S0142-1123(00)00108-0

    Article  Google Scholar 

  43. Niesłony A, Böhm M (2012) Mean stress value in spectral method for the determination of fatigue life. Acta Mech Automatica 6(2):71–74

    Google Scholar 

  44. Mršnik M, Slavič J, Boltežar M (2013) Frequency-domain methods for a vibration-fatigue-life estimation—application to real data. Int J Fatigue 47:8–17. https://doi.org/10.1016/j.ijfatigue.2012.07.005

    Article  Google Scholar 

  45. Simiu E, Scanlan R (1996) Wind effects on structures. Wiley, New York

    Google Scholar 

  46. Davenport AG (1961) The spectrum of horizontal gustiness near the ground in high winds. Q J R Meteorol Soc 87(372):194–211. https://doi.org/10.1002/qj.49708737208

    Article  ADS  Google Scholar 

  47. Davenport G (1964) Note on the distribution of the largest value of a random function with application to gust loading. Proc Inst Civ Eng 28(2):187–196. https://doi.org/10.1680/iicep.1964.10112

    Google Scholar 

Download references

Acknowledgements

Support to this research by the PRIN2015, Project No 2015TTJN95 entitled ‘‘Identification and monitoring of complex structural systems’’, is gratefully acknowledged.

Funding

This study was funded by MIUR (Grant No. 2015TTJN95).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alba Sofi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sofi, A., Muscolino, G. & Giunta, F. Fatigue analysis of structures with interval axial stiffness subjected to stationary stochastic excitations. Meccanica 54, 1471–1487 (2019). https://doi.org/10.1007/s11012-019-01022-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-019-01022-2

Keywords

Navigation