Skip to main content
Log in

A novel eight-legged vibration isolation platform with dual-pyramid-shape struts

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

An eight-legged vibration isolation platform (ELVIP) with dual-pyramid-shape (DPS) struts is proposed in this paper to achieve six-degree-of-freedom vibration isolation. The DPS strut has higher static stiffness and lower dynamic stiffness than the equivalent linear strut due to geometric nonlinearity, and therefore the ELVIP with DPS struts possesses high-static–low-dynamic-stiffness characteristic which is desirable for widening the frequency range of isolation. The layout of the ELVIP legs is conducive to vibration decoupling and has higher reliability than six-legged platforms. Firstly, the stiffness characteristics of the DPS strut are derived; then the dynamic model of the ELVIP with DPS struts is established and the steady-state responses are obtained analytically; finally, the isolation performance is studied and the effects of damping and excitation amplitudes are investigated. It is shown that the ELVIP with DPS struts, as a passive approach, can achieve good isolation performance in all six directions with a small static deflection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  1. Ibrahim RA (2008) Recent advances in nonlinear passive vibration isolators. J Sound Vib 314:371–452

    Article  ADS  Google Scholar 

  2. Gatti G (2018) Fundamental insight on the performance of a nonlinear tuned mass damper. Meccanica 53:111–123

    Article  MathSciNet  Google Scholar 

  3. Carrella A, Brennan MJ, Waters TP (2007) Optimization of a quasi-zero-stiffness isolator. J Mech Sci Technol 21:946–949

    Article  Google Scholar 

  4. Carrella A, Brennan MJ, Waters TP (2007) Static analysis of a passive vibration isolator with quasi-zero-stiffness characteristic. J Sound Vib 301:678–689

    Article  ADS  Google Scholar 

  5. Carrella A, Brennan MJ, Kovacic I, Waters TP (2009) On the force transmissibility of a vibration isolator with quasi-zero-stiffness. J Sound Vib 322:707–717

    Article  ADS  Google Scholar 

  6. Carrella A, Brennan MJ, Waters TP, Lopes V Jr (2012) Force and displacement transmissibility of a nonlinear isolator with high-static–low-dynamic-stiffness. Int J Mech Sci 55:22–29

    Article  Google Scholar 

  7. Kovacica I, Brennan MJ, Waters TP (2008) A study of a nonlinear vibration isolator with a quasi-zero stiffness characteristic. J Sound Vib 315:700–711

    Article  ADS  Google Scholar 

  8. Xu DL, Zhang YY, Zhou JX, Luo JJ (2014) On the analytical and experimental assessment of the performance of a quasi-zero-stiffness isolator. J Vib Control 20:2314–2325

    Article  Google Scholar 

  9. Le TD, Ahn KK (2013) Experimental investigation of a vibration isolation system using negative stiffness structure. Int J Mech Sci 70:99–112

    Article  Google Scholar 

  10. Yang C, Yuan XW, Wu J, Yang BS (2012) The research of passive vibration isolation system with broad frequency field. J Vib Control 19:1348–1356

    Article  Google Scholar 

  11. Zhou JX, Wang XL, Xu DL, Bishop S (2015) Nonlinear dynamic characteristics of a quasi-zero stiffness vibration isolator with cam–roller–spring mechanisms. J Sound Vib 346:53–69

    Article  ADS  Google Scholar 

  12. Lan CC, Yang SA, Wu YS (2014) Design and experiment of a compact quasi-zero-stiffness isolator capable of a wide range of loads. J Sound Vib 333:4843–4858

    Article  ADS  Google Scholar 

  13. Liu CR, Yu KP (2018) A high-static–low-dynamic-stiffness vibration isolator with the auxiliary system. Nonlinear Dyn 94:1549–1567

    Article  Google Scholar 

  14. Robertson WS, Kidner MRF, Cazzolato BS, Zander AC (2009) Theoretical design parameters for a quasi-zero stiffness magnetic spring for vibration isolation. J Sound Vib 326:88–103

    Article  ADS  Google Scholar 

  15. Xu DL, Yu QP, Zhou JX, Bishop SR (2013) Theoretical and experimental analyses of a nonlinear magnetic vibration isolator with quasi-zero-stiffness characteristic. J Sound Vib 332:3377–3389

    Article  ADS  Google Scholar 

  16. Wu WJ, Chen XD, Shan YH (2014) Analysis and experiment of a vibration isolator using a novel magnetic spring with negative stiffness. J Sound Vib 333:2958–2970

    Article  ADS  Google Scholar 

  17. Zheng YS, Zhang XN, Luo YJ, Yan B, Ma CC (2016) Design and experiment of a high-static–low-dynamic stiffness isolator using a negative stiffness magnetic spring. J Sound Vib 360:31–52

    Article  ADS  Google Scholar 

  18. Dong GX, Zhang XN, Xie SL, Yan B, Luo YJ (2017) Simulated and experimental studies on a high-static–low-dynamic stiffness isolator using magnetic negative stiffness spring. Mech Syst Signal Process 86:188–203

    Article  ADS  Google Scholar 

  19. Huang XC, Liu XT, Hua HX (2014) On the characteristics of an ultra-low frequency nonlinear isolator using sliding beam as negative stiffness. J Mech Sci Technol 28:813–822

    Article  Google Scholar 

  20. Huang XC, Liu XT, Sun JY, Zhang ZY, Hua HX (2014) Effect of the system imperfections on the dynamic response of a high-static–low-dynamic stiffness vibration isolator. Nonlinear Dyn 76:1157–1167

    Article  MathSciNet  Google Scholar 

  21. Huang XC, Liu XT, Sun JY, Zhang ZY, Hua HX (2014) Vibration isolation characteristics of a nonlinear isolator using Euler buckled beam as negative stiffness corrector: a theoretical and experimental study. J Sound Vib 333:1132–1148

    Article  ADS  Google Scholar 

  22. Liu XT, Huang XC, Hua HX (2013) On the characteristics of a quasi-zero stiffness isolator using Euler buckled beam as negative stiffness corrector. J Sound Vib 332:3359–3376

    Article  ADS  Google Scholar 

  23. Wu Y, Yu KP, Jiao J, Zhao R (2015) Dynamic modeling and robust nonlinear control of a six-DOF active micro-vibration isolation manipulator with parameter uncertainties. Mech Mach Theory 92:407–435

    Article  Google Scholar 

  24. Yang XL, Wu HT, Li Y, Chen B (2017) Dynamic isotropic design and decentralized active control of a six-axis vibration isolator via Stewart platform. Mech Mach Theory 117:244–252

    Article  Google Scholar 

  25. Wang CX, Xie XL, Chen YH, Zhang ZY (2016) Investigation on active vibration isolation of a Stewart platform with piezoelectric actuators. J Sound Vib 383:1–19

    Article  ADS  Google Scholar 

  26. Wu ZJ, Jing XJ, Sun B, Li FM (2016) A 6DOF passive vibration isolator using X-shape supporting structures. J Sound Vib 380:90–111

    Article  ADS  Google Scholar 

  27. Hu FZ, Jing XJ (2018) A 6-DOF passive vibration isolator based on Stewart structure with X-shaped legs. Nonlinear Dyn 91:157–185

    Article  Google Scholar 

  28. Zhou JX, Xiao QY, Xu DL, Ouyang HJ, Li YL (2017) A novel quasi-zero-stiffness strut and its applications in six-degree-of-freedom vibration isolation platform. J Sound Vib 394:59–74

    Article  ADS  Google Scholar 

  29. Zhou JX, Wang K, Xu DL, Ouyang HJ, Li YL (2017) A six degrees-of-freedom vibration isolation platform supported by a hexapod of quasi-zero-stiffness struts. J Vib Acoust 139:034502

    Article  Google Scholar 

  30. Zhu T, Cazzolato B, Robertson WSP, Zander A (2015) Vibration isolation using six degree-of-freedom quasi-zero stiffness magnetic levitation. J Sound Vib 358:48–73

    Article  ADS  Google Scholar 

  31. Li YL, Xu DL (2017) Vibration attenuation of high dimensional quasi-zero stiffness floating raft system. Int J Mech Sci 126:186–195

    Article  Google Scholar 

  32. Zheng YS, Li QP, Yan B, Luo YJ, Zhang XN (2018) A Stewart isolator with high-static–low-dynamic stiffness struts based on negative stiffness magnetic springs. J Sound Vib 422:390–408

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This research was financially supported by China Academy of Space Technology, which is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaiping Yu.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of the paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1

See Table 4.

Table 4 Terminology table

Appendix 2: Some expressions

The coefficients in Eq. (18):

$$ \eta_{0} = \frac{9}{4}\left[ {1 - \frac{{\sqrt {1 - \varepsilon^{2} } }}{{\sqrt {1 - \left( {\varepsilon - u_{\text{eq}} } \right)^{2} } }}} \right]\left( {\varepsilon - u_{\text{eq}} } \right) + \lambda u_{\text{eq}} $$
(68)
$$ \eta_{1} = \frac{9}{4}\left\{ {\frac{{\sqrt {1 - \varepsilon^{2} } }}{{\left[ {1 - \left( {\varepsilon - u_{\text{eq}} } \right)^{2} } \right]^{{\frac{3}{2}}} }} - 1} \right\} + \lambda $$
(69)
$$ \eta_{2} = - \frac{{27\sqrt {1 - \varepsilon^{2} } \left( {\varepsilon - u_{\text{eq}} } \right)}}{{8\left[ {1 - \left( {\varepsilon - u_{\text{eq}} } \right)^{2} } \right]^{{\frac{5}{2}}} }} $$
(70)
$$ \eta_{3} = \frac{{9\sqrt {1 - \varepsilon^{2} } \left[ {1 + 4\left( {\varepsilon - u_{\text{eq}} } \right)^{2} } \right]}}{{8\left[ {1 - \left( {\varepsilon - u_{\text{eq}} } \right)^{2} } \right]^{{\frac{7}{2}}} }} $$
(71)

The expressions of \( {\mathbf{A}}_{i} \) and \( {\mathbf{B}}_{i} \):

$$ {\mathbf{A}}_{1} = {\mathbf{A}}_{2} = a\left[ {\begin{array}{*{20}c} 1 \\ 0 \\ 0 \\ \end{array} } \right];\quad {\mathbf{A}}_{3} = {\mathbf{A}}_{4} = a\left[ {\begin{array}{*{20}c} 0 \\ 1 \\ 0 \\ \end{array} } \right];\quad {\mathbf{A}}_{5} = {\mathbf{A}}_{6} = a\left[ {\begin{array}{*{20}c} { - 1} \\ 0 \\ 0 \\ \end{array} } \right];\quad {\mathbf{A}}_{7} = {\mathbf{A}}_{8} = a\left[ {\begin{array}{*{20}c} 0 \\ { - 1} \\ 0 \\ \end{array} } \right] $$
(72)
$$ {\mathbf{B}}_{8} = {\mathbf{B}}_{1} = a\left[ {\begin{array}{*{20}c} 1 \\ { - 1} \\ { - \tan \phi } \\ \end{array} } \right];\quad {\mathbf{B}}_{2} = {\mathbf{B}}_{3} = a\left[ {\begin{array}{*{20}c} 1 \\ 1 \\ { - \tan \phi } \\ \end{array} } \right];\quad {\mathbf{B}}_{4} = {\mathbf{B}}_{5} = a\left[ {\begin{array}{*{20}c} { - 1} \\ 1 \\ { - \tan \phi } \\ \end{array} } \right];\quad {\mathbf{B}}_{6} = {\mathbf{B}}_{7} = - a\left[ {\begin{array}{*{20}c} 1 \\ 1 \\ {\tan \phi } \\ \end{array} } \right] $$
(73)

where \( a \) is the half length of the diagonal line of the platform.

The sub-rotation matrices:

$$ {\mathbf{R}}_{1} = \left[ {\begin{array}{*{20}c} 1 & 0 & 0 \\ 0 & {\cos \alpha } & { - \sin \alpha } \\ 0 & {\sin \alpha } & {\cos \alpha } \\ \end{array} } \right] $$
(74)
$$ {\mathbf{R}}_{2} = \left[ {\begin{array}{*{20}c} {\cos \beta } & 0 & {\sin \beta } \\ 0 & 1 & 0 \\ { - \sin \beta } & 0 & {\cos \beta } \\ \end{array} } \right] $$
(75)
$$ {\mathbf{R}}_{3} = \left[ {\begin{array}{*{20}c} {\cos \gamma } & { - \sin \gamma } & 0 \\ {\sin \gamma } & {\cos \gamma } & 0 \\ 0 & 0 & 1 \\ \end{array} } \right] $$
(76)

The expressions of \( {\mathbf{A^{\prime}}}_{i} \):

$$ {\mathbf{A}}_{1}^{\prime } = {\mathbf{A}}_{2}^{\prime } = a\left[ {\begin{array}{*{20}c} {\cos \beta \cos \gamma + {x \mathord{\left/ {\vphantom {x a}} \right. \kern-0pt} a}} \hfill \\ {\cos \alpha \sin \gamma + \sin \alpha \sin \beta \cos \gamma + {y \mathord{\left/ {\vphantom {y a}} \right. \kern-0pt} a}} \hfill \\ {\sin \alpha \sin \gamma - \cos \alpha \sin \beta \cos \gamma + {z \mathord{\left/ {\vphantom {z a}} \right. \kern-0pt} a}} \hfill \\ \end{array} } \right] $$
(77)
$$ {\mathbf{A}}_{3}^{\prime } = {\mathbf{A}}_{4}^{\prime } = a\left[ {\begin{array}{*{20}c} { - \cos \beta \sin \gamma + {x \mathord{\left/ {\vphantom {x a}} \right. \kern-0pt} a}} \hfill \\ {\cos \alpha \cos \gamma - \sin \alpha \sin \beta \sin \gamma + {y \mathord{\left/ {\vphantom {y a}} \right. \kern-0pt} a}} \hfill \\ {\sin \alpha \cos \gamma + \cos \alpha \sin \beta \sin \gamma + {z \mathord{\left/ {\vphantom {z a}} \right. \kern-0pt} a}} \hfill \\ \end{array} } \right] $$
(78)
$$ {\mathbf{A}}_{5}^{\prime } = {\mathbf{A}}_{6}^{\prime } = a\left[ {\begin{array}{*{20}c} {\cos \beta \cos \gamma + {x \mathord{\left/ {\vphantom {x a}} \right. \kern-0pt} a}} \hfill \\ {\cos \alpha \sin \gamma + \sin \alpha \sin \beta \cos \gamma + {y \mathord{\left/ {\vphantom {y a}} \right. \kern-0pt} a}} \hfill \\ {\sin \alpha \sin \gamma - \cos \alpha \sin \beta \cos \gamma + {z \mathord{\left/ {\vphantom {z a}} \right. \kern-0pt} a}} \hfill \\ \end{array} } \right] $$
(79)
$$ {\mathbf{A}}_{7}^{\prime } = {\mathbf{A}}_{8}^{\prime } = a\left[ {\begin{array}{*{20}c} { - \cos \beta \sin \gamma + {x \mathord{\left/ {\vphantom {x a}} \right. \kern-0pt} a}} \hfill \\ {\cos \alpha \cos \gamma - \sin \alpha \sin \beta \sin \gamma + {y \mathord{\left/ {\vphantom {y a}} \right. \kern-0pt} a}} \hfill \\ {\sin \alpha \cos \gamma + \cos \alpha \sin \beta \sin \gamma + {z \mathord{\left/ {\vphantom {z a}} \right. \kern-0pt} a}} \hfill \\ \end{array} } \right] $$
(80)

The expressions of \( N_{i} \left( {\mathbf{P}} \right) \):

$$ N_{1} \left( {\mathbf{P}} \right) = - y\cos \phi - z\sin \phi + \beta a\sin \phi - \gamma a\cos \phi $$
(81)
$$ N_{2} \left( {\mathbf{P}} \right) = \;\;y\cos \phi - z\sin \phi + \beta a\sin \phi + \gamma a\cos \phi $$
(82)
$$ N_{3} \left( {\mathbf{P}} \right) = \;\;x\cos \phi - z\sin \phi - \alpha a\sin \phi - \gamma a\cos \phi $$
(83)
$$ N_{4} \left( {\mathbf{P}} \right) = - x\cos \phi - z\sin \phi - \alpha a\sin \phi + \gamma a\cos \phi $$
(84)
$$ N_{5} \left( {\mathbf{P}} \right) = \;\;y\cos \phi - z\sin \phi - \beta a\sin \phi - \gamma a\cos \phi $$
(85)
$$ N_{6} \left( {\mathbf{P}} \right) = - y\cos \phi - z\sin \phi - \beta a\sin \phi + \gamma a\cos \phi $$
(86)
$$ N_{7} \left( {\mathbf{P}} \right) = - x\cos \phi - z\sin \phi + \alpha a\sin \phi - \gamma a\cos \phi $$
(87)
$$ N_{8} \left( {\mathbf{P}} \right) = \;\;x\cos \phi - z\sin \phi + \alpha a\sin \phi + \gamma a\cos \phi $$
(88)

The expressions of \( \rho_{0} \), \( \rho_{1} \), \( \rho_{2} \) and \( \rho_{3} \):

$$ \rho_{0} = 2k_{h} L\eta_{0} ;\quad \rho_{1} = k_{h} \eta_{1} ;\quad \rho_{2} = \frac{{k_{h} \eta_{2} }}{2L};\quad \rho_{3} = \frac{{k_{h} \eta_{3} }}{{\left( {2L} \right)^{2} }} $$
(89)

The expressions of inertial matrix, damping matrix, linear stiffness matrix and excitation amplitude vector:

$$ {\mathbf{M}} = {\text{diag}}(m,m,m,I_{x} ,I_{y} ,I_{z} ) $$
(90)
$$ {\mathbf{C}} = 4c \cdot {\text{diag}}(\phi_{c}^{2} , \, \phi_{c}^{2} , \, 2\phi_{s}^{2} , \, \phi_{s}^{2} a^{2} , \, \phi_{s}^{2} a^{2} , \, 2\phi_{c}^{2} a^{2} ) $$
(91)
$$ {\mathbf{K}} = 4\rho_{1} \cdot {\text{diag}}(\phi_{c}^{2} , \, \phi_{c}^{2} , \, 2\phi_{s}^{2} , \, \phi_{s}^{2} a^{2} , \, \phi_{s}^{2} a^{2} , \, 2\phi_{c}^{2} a^{2} ) $$
(92)
$$ {\mathbf{F}}_{E0} = \left[ {F_{x0} ,F_{y0} ,F_{z0} ,M_{\alpha 0} ,M_{\beta 0} ,M_{\gamma 0} } \right]^{\text{T}} . $$
(93)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, C., Yu, K. & Pang, S. A novel eight-legged vibration isolation platform with dual-pyramid-shape struts. Meccanica 54, 873–899 (2019). https://doi.org/10.1007/s11012-019-01005-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-019-01005-3

Keywords

Navigation