Skip to main content
Log in

Size- and shape-dependent effective conductivity of porous media with spheroidal gas-filled inclusions

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

Porous media containing gas-filled inclusions embedded in a solid phase constitute an important class of natural or artificial materials of both theoretical and practical interest. In these materials, thermal conductivity is one of the most important properties. In a variety of situations of practical interest, when the characteristic size of gas-filled inclusions is comparable with the mean free path of gas molecules and when the slip flow regime is considered, the behavior of gas near solid surfaces cannot be described by classical thermal conductivity equations. In fact, the boundary conditions at the solid surfaces must be modified by considering that the temperature and normal heat flux simultaneously suffer a discontinuity. The first purpose of the present work is to develop an efficient and accurate micromechanical model capable of estimating the effective conductivity of porous materials while taking into account the discontinuities of the temperature and normal heat flux across solid surfaces and the non-spherical form of gas-filled inclusions. The second purpose of the present work is to study the dependencies of the effective conductivity on the size and shape of gas-filled inclusions. By applying the micromechanical model based on the differential scheme and by using the solution results obtained for auxiliary dilute problem accounting for modified boundary conditions on surface solids, the closed-form expression for the effective conductivity is obtained. Numerical results are provided to illustrate the dependence of the effective conductivity on the size and shape of gas-filled inclusions in the case of randomly oriented inclusions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Goldstein RJ, Ibele WE, Patankar SV, Simon TW, Kuehn TH, Strykowski PJ, Tamma KK, Heberlein JVR, Davidson JH, Bischof J, Kulacki FA, Kortshagen U, Garrick S, Srinivasan V (2006) Heat transfer–a review of 2003 literature. Int J Heat Mass Transfer 49:451–534

    Article  MATH  Google Scholar 

  2. Eshelby JD (1959) The elastic field outside an ellipsoidal inclusion. Proc R Soc A252:561–569

    Article  MathSciNet  MATH  ADS  Google Scholar 

  3. Eshelby JD (1961) Elastic inclusions and heterogeneities. Progress in solid mechanics, vol 2. North-Holland, Amsterdam (Chapter 3)

    Google Scholar 

  4. Zimmerman RW (1989) Thermal conductivity of fluid-saturated rocks. J Pet Sci Eng 3:219–227

    Article  Google Scholar 

  5. Shafiro B, Kachanov M (2000) Anisotropic effective conductivity of materials with non-randomly oriented inclusions of diverse ellipsoidal shapes. J Appl Phys 87:8561–8569

    Article  ADS  Google Scholar 

  6. Sevostianov I (2006) Thermal conductivity of a material containing cracks of arbitrary shape. Int J Eng Sci 44:513–528

    Article  Google Scholar 

  7. Gruescu C, Giraud A, Homand F, Kondo D, Do DP (2007) Effective thermal conductivity of partially saturated porous rocks. Int J Solids Struct 44:811–833

    Article  MATH  Google Scholar 

  8. Giraud A, Gruescu C, Do DP, Homand F, Kondo D (2007) Effective thermal conductivity of transversely isotropic media with arbitrary oriented ellipsoidal inhomogeneities. Int J Solids Struct 44:2627–2647

    Article  MATH  Google Scholar 

  9. Bary B (2011) Estimation of poromechanical and thermal conductivity properties of unsaturated isotropically microcracked cement pastes. Int J Numer Anal Methods Geomech 35:1560–1586

    Article  Google Scholar 

  10. Chen Y, Li D, Jiang Q, Zhou C (2012) Micromechanical analysis of anisotropic damage and its influence on effective thermal conductivity in brittle rocks. Int J Rock Mech Min Sci 50:102–116

    Article  Google Scholar 

  11. Chen Y, Zhou S, Hu R, Zhou C (2015) A homogenization-based model for estimating effective thermal conductivity of unsaturated compacted bentonites. Int J Heat Mass Transfer 83:731–740

    Article  Google Scholar 

  12. Sanchez-Palencia E (1974) Comportement local et macroscopique d’un type de milieux physiques hétérogènes. Int J Eng Sci 12:331–351

    Article  MATH  Google Scholar 

  13. Bensoussan A, Lions JL, Papanicolaou G (1978) Asymptotic analysis for periodic structures. North-Holland, Amsterdam

    MATH  Google Scholar 

  14. Bakhvalov N, Panasenko G (1989) Homogenization: averaging processes in periodic media. Kluwer, Dordrecht

    Book  MATH  Google Scholar 

  15. Ene HI, Polisevski D (1987) Thermal flow in porous media. Reidel, Holland, Dordrecht

    Book  Google Scholar 

  16. Auriault JL, Sanchez-Palencia E (1977) Etude du comportement macroscopique d’un milieu poreux saturé déformable. J Mec 16:575–603

    MATH  Google Scholar 

  17. Mei CC, Auriault JL (1989) Mechanics of heterogeneous porous media with several spatial scales. Proc R Soc Lond A426:391–423

    Article  MathSciNet  MATH  ADS  Google Scholar 

  18. Lee CK, Mei CC (1997) Thermal consolidation in porous media by homogenization theory—I. Derivation of macroscale equations. Adv Water Resour 20:127–144

    Article  ADS  Google Scholar 

  19. Lee CK, Mei CC (1997) Thermal consolidation in porous media by homogenization theory—II. Calculation of effective coefficients. Adv Water Resour 20:145–156

    Article  ADS  Google Scholar 

  20. Kogan MN (1969) Rarefied gas dynamics. Plenum Press, New York

    Book  Google Scholar 

  21. Cercignani C (1975) Theory and applications of the Boltzmann equation. Scottish Academic Press, Edinburgh

    MATH  Google Scholar 

  22. Markov M, Levin V, Mousatov A, Kazatchenko E (2017) Effective thermal conductivity of inhomogeneous medium containing gas-filled inclusions. Math Meth Appl Sci 40:3283–3289

    Article  MathSciNet  MATH  Google Scholar 

  23. Markov A, Levin V, Markov M (2016) Effective thermal conductivity of gas-solid mixtures. Effect of the size of inclusions. Int J Heat Mass Transfer 98:108–113

    Article  Google Scholar 

  24. Sharipov F (2007) Rarefied gas dynamics and its applications to vacuum technology. On-line publication: fisica.ufpr.br/sharipov/CERN.pdf

  25. Bedeaux D, Albano AM, Mazur P (1976) Boundary conditions and nonequilibrium thermodynamics. Physica A82:438–462

    Article  ADS  Google Scholar 

  26. Bakanov SP, Deryagin BV, Roldugin VI (1979) Reviews of topical problems: thermophoresis in gases. Sov Phys USP. https://doi.org/10.1070/PU1979v022n10ABEH005616

    Google Scholar 

  27. Yalamov YI, Poddoskin AB, Yushkanov AA (1980) Boundary conditions for the flow of a nonuniformly heated gas around a spherical surface of small curvature. Sov Phys Dokl 25:734–737

    ADS  Google Scholar 

  28. Zhdanov VM, Roldugin VI (2002) On a kinetic justification of the generalized nonequilibrium thermodynamics of multicomponent systems. J Exp Theor Phys 95:682–696

    Article  ADS  Google Scholar 

  29. Poddoskin AB, Yushkanov AA, Yalamov YI (2001) Kinetic coefficients in the boundary-value problem on the slip of a multiatomic gas with rotational degrees of freedom. High Temp 39:912–920

    Article  Google Scholar 

  30. Poddoskin AB, Yushkanov AA, Yalamov YI (2001) Slip coefficients and macro parameter jumps of a diatomic gas with rotational degrees of freedom on a weekly curved spherical surface. Fluid Mech 51:132–142

    MATH  Google Scholar 

  31. Miller RE, Shenoy VB (2000) Size-dependent elastic properties of nanosized structural elements. Nanotechnology 11:139–147

    Article  ADS  Google Scholar 

  32. Shenoy VB (2002) Size-dependent rigidities of nanosized torsional elements. Int J Solids Struct 39:4039–4052

    Article  MATH  Google Scholar 

  33. Shenoy VB (2005) Atomistic calculations of elastic properties of metallic FCC crystal surfaces. Phys Rev B 71:094104-1–094104-11

    ADS  Google Scholar 

  34. Dingreville R, Qu J, Cherkaoui M (2005) Surface free energy and its effect on the elastic behavior of nano-sized particles, wires and films. J Mech Phys Solids 8:1827–1854

    Article  MathSciNet  MATH  ADS  Google Scholar 

  35. Kurti N, Rollin BV, Simon F (1936) Preliminary experiments on temperature equilibrium at very low temperatures. Physica 3:266–274

    Article  ADS  Google Scholar 

  36. Keesom WH, Keesom AP (1936) On the heat conductivity of liquid helium. Physica 3:359–360

    Article  ADS  Google Scholar 

  37. Kapitza SB (1941) The study of heat transfert in Helium II. J Phys (USSR) 4:181–210

    Google Scholar 

  38. Pham-Huy H, Sanchez-Palencia E (1974) Phénomènes de transmission à travers des couches minces de conductivité élevée. J Math Anal Appl 47:284–309

    Article  MathSciNet  MATH  Google Scholar 

  39. Stora E, He QC, Bary B (2006) Influence of inclusion shape on the effective linear elastic properties of hardened cement pastes. Cem Concr Res 36:1330–1344

    Article  Google Scholar 

  40. Benveniste Y, Miloh T (1986) The effective conductivity of composites with imperfect thermal contact at constituent interfaces. Int J Eng Sci 24:1537–1552

    Article  MATH  Google Scholar 

  41. Miloh T, Benveniste Y (1999) On the effective conductivity of composites with ellipsoidal inhomogeneities and highly conducting interfaces. Proc R Soc Lond A455:2687–2706

    Article  MathSciNet  MATH  ADS  Google Scholar 

  42. Hashin Z (2001) Thin interphase/imperfect interface in conduction. J Appl Phys 84:2261–2267

    Article  ADS  Google Scholar 

  43. Hobson EW (1931) The theory of spherical and ellipsoidal harmonics. University Press, Cambridge

    MATH  Google Scholar 

  44. Jasiuk I, Tsuchida E, Mura T (1987) The sliding inclusion under shear. Int J Solids Struct 23:1373–1385

    Article  MATH  Google Scholar 

  45. Norris AN (1985) A differential scheme for the effective moduli of composites. Mech Mater 4:1–16

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Le Quang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Appendices

Appendix 1: Algebraic calculations in orthogonal curvilinear coordinates

Consider a surface \(\varGamma ^{(i)}\) situated in a three-dimensional Euclidean space. In order to obtain a mathematical characterization of \(\varGamma ^{(i)}\) , a system of orthogonal curvilinear coordinates \(\{y_{1},y_{2},y_{3}\}\) is defined such that the position vector \({\mathbf {x}}=(x_{1},x_{2},x_{3})\) of any point in space is expressed as

$$\begin{aligned} {\mathbf {x}}={\mathbf {x}} (y_{1},y_{2},y_{3})=[x_{1}(y_{1},y_{2},y_{3}), x_{2}(y_{1},y_{2},y_{3}),x_{3}(y_{1},y_{2},y_{3})]. \end{aligned}$$
(84)

The vector tangent to the \(y_{i}\)-coordinate curve is defined by

$$\begin{aligned} {\mathbf {t}}_{i}=\frac{\partial {\mathbf {x}}}{\partial y_{i}}=h_{i}{\mathbf {f}}_{i} \quad \hbox {with}\quad h_{i}=\left\| \frac{\partial {\mathbf {x}}}{\partial y_{i}}\right\| \end{aligned}$$
(85)

where the summation convention does not apply, \(h_{i}\) is a metric coefficient and \({\mathbf {f}}_{i}\) is the unit vector tangent to the \(y_{i}\) -coordinate curve. Since the curvilinear coordinates \(y_{1}\), \(y_{2}\) and \(y_{3}\) are orthogonal, \({\mathbf {f}}_{1}\), \({\mathbf {f}}_{2}\) and \({\mathbf {f}}_{3}\) are orthonomal so that \({\mathbf {f}}_{i}\cdot {\mathbf {f}}_{j}=\delta _{ij}\). The surface \(\varGamma ^{(i)}\) can be now defined by

$$\begin{aligned} \varGamma ^{(i)}=\left\{ {\mathbf {x}}={\mathbf {x}}(y_{1},y_{2},y_{3})\in {\mathbf {R}} ^{3}\mid y_{1}=\gamma _{0}\right\} \end{aligned}$$
(86)

where \(\gamma _{0}\) is a constant scalar value.

Let us now introduce the temperature field \(\varphi ({\mathbf {y}})\). The temperature gradient \(\nabla \varphi\) is defined in the orthonormal curvilinear basis \(\{{\mathbf {f}}_{1},{\mathbf {f}}_{2},{\mathbf {f}}_{3}\}\) by

$$\begin{aligned} \nabla \varphi ({\mathbf {y}})=\frac{1}{h_{1}}\frac{\partial \varphi }{\partial y_{1}}{\mathbf {f}}_{1}+\frac{1}{h_{2}}\frac{\partial \varphi }{\partial y_{2}} {\mathbf {f}}_{2}+\frac{1}{h_{3}}\frac{\partial \varphi }{\partial y_{3}} {\mathbf {f}}_{3}. \end{aligned}$$
(87)

Correspondingly, the resulting intensity field \({\mathbf {e}}({\mathbf {y}})\) is determined by

$$\begin{aligned} {\mathbf {e}}({\mathbf {y}})=-\frac{1}{h_{1}}\frac{\partial \varphi }{\partial y_{1}}{\mathbf {f}}_{1}-\frac{1}{h_{2}}\frac{\partial \varphi }{\partial y_{2}} {\mathbf {f}}_{2}-\frac{1}{h_{3}}\frac{\partial \varphi }{\partial y_{3}} {\mathbf {f}}_{3}. \end{aligned}$$
(88)

The heat flux divergence \(\nabla \cdot {\mathbf {q}}\) is expressed in the system of orthonormal curvilinear coordinates \(\{y_{1},y_{2},y_{3}\}\) by

$$\begin{aligned} \nabla \cdot {\mathbf {q}}=\frac{1}{h_{1}h_{2}h_{3}}\left[ \frac{\partial \left( h_{2}h_{3}q_{1}\right) }{\partial y_{1}}+\frac{\partial \left( h_{1}h_{3}q_{2}\right) }{\partial y_{2}}+\frac{\partial \left( h_{1}h_{2}q_{3}\right) }{\partial y_{3}}\right] . \end{aligned}$$
(89)

The surface Laplacian of the temperature field \(\varDelta _{s}\varphi ({\mathbf {y }})\) is defined by

$$\begin{aligned} \varDelta _{s}\varphi =\frac{1}{h_{2}h_{3}}\left[ \frac{\partial }{\partial y_{2}}\left( \frac{h_{3}}{h_{2}}\frac{\partial \varphi }{\partial y_{2}} \right) +\frac{\partial }{\partial y_{3}}\left( \frac{h_{2}}{h_{3}}\frac{ \partial \varphi }{\partial y_{3}}\right) \right] . \end{aligned}$$
(90)

Now, we consider several important cases where the surface \(\varGamma ^{(i)}\) is spherical or spheroidal. The previous definitions are now specified in detail.

  • Spherical coordinate system

    First, when the surface \(\varGamma ^{(i)}\) has a spherical form, the orthogonal curvilinear coordinate system described above reduces to the system of spherical coordinates \((r,\theta ,\phi )\), where \(y_{1}\equiv r\in [0,+\,\infty ]\) is the radial coordinate, \(y_{3}\equiv \phi \in [0,2\pi ]\) is the azimuthal angle and \(y_{2}\equiv \theta \in [0,\pi ]\) is the elevation angle with

    $$\begin{aligned} r=\sqrt{x_{1}^{2}+x_{2}^{2}+x_{3}^{2}},\quad \tan {\theta }=\sqrt{ x_{1}^{2}+x_{2}^{2}}/x_{3},\quad \tan {\phi }=x_{2}/x_{1} \end{aligned}$$
    (91)

    or inversely,

    $$\begin{aligned} x_{1}=r\cos \phi \sin \theta ,\quad x_{2}=r\sin \phi \sin \theta ,\quad x_{3}=r\cos \theta . \end{aligned}$$
    (92)

    This spherical coordinate system \((r,\theta ,\phi )\) is associated to the corresponding spherical orthonormal basis \(\{{\mathbf {f}}_{r},{\mathbf {f}}_{\theta },{\mathbf {f}}_{\phi }\}\) defined by

    $$\begin{aligned} {\mathbf {f}}_{1}\equiv \,& {} {\mathbf {f}}_{r}= \sin \theta (\cos \phi {\mathbf {j}} _{1}+\sin \phi {\mathbf {j}}_{2})+\cos \theta {\mathbf {j}}_{3},\nonumber \\ {\mathbf {f}}_{2}\equiv \,& {} {\mathbf {f}}_{\theta }=\cos \theta (\cos \phi {\mathbf {j}} _{1}+\sin \phi {\mathbf {j}}_{2})-\sin \theta {\mathbf {j}}_{3},\nonumber \\ {\mathbf {f}}_{3}\equiv \,& {} {\mathbf {f}}_{\phi }=-\sin \phi {\mathbf {j}}_{1}+\cos \phi {\mathbf {j}}_{2}. \end{aligned}$$
    (93)

    The metric coefficients of the spherical coordinate system \((r,\phi ,\theta )\) are given by

    $$\begin{aligned} h_{1}\equiv h_{r}=1,\quad h_{2}\equiv h_{\theta }=r, \quad h_{3}\equiv h_{\phi }=r\sin \theta . \end{aligned}$$
    (94)
  • Prolate spheroidal coordinate system

    Second, when the surface \(\varGamma ^{(i)}\) has a prolate spheroidal form, the orthogonal curvilinear coordinate system described above corresponds to the the system of prolate spheroidal coordinates \((\alpha ,\beta ,\gamma )\) with \(y_{1}\equiv \alpha \in [0,+\infty ]\), \(y_{3}\equiv \gamma \in [0,2\pi ]\) and \(y_{2}\equiv \beta \in [0,\pi ]\). By introducing some additional notations as follows:

    $$\begin{aligned} p=\cos \beta ,\;\bar{p}=\sqrt{1-p^{2}}=\sin \beta ,\;\mu =\cosh \alpha ,\; \bar{\mu }=\sqrt{\mu ^{2}-1}=\sinh \alpha \end{aligned}$$
    (95)

    where b and a (\(a>b\), or equivalently \(w=a/b>1\)) are the equatorial radius and the distance from center to pole along the symmetry axis of the spheroidal surface, respectively. The connection between the prolate spheroidal coordinates \((\alpha ,\beta ,\gamma )\) and the Cartesian coordinates \((x_{1},x_{2},x_{3})\) is specified by

    $$\begin{aligned} x_{1}=c\bar{p}\bar{\mu }\cos \gamma ,\quad x_{2}=c\bar{p}\bar{\mu }\sin \gamma ,\quad x_{3}=cp\mu , \end{aligned}$$
    (96)

    where \(c=a/\mu\) is the distance from the focal point to the center of spheroidal surface. The prolate spheroidal coordinate system \((\alpha ,\beta ,\gamma )\) is relative to the corresponding prolate spheroidal orthonormal basis \(\{{\mathbf {f}}_{\alpha },{\mathbf {f}}_{\beta },{\mathbf {f}}_{\gamma }\}\) given by

    $$\begin{aligned} {\mathbf {f}}_{1}\,\equiv\,& {} {\mathbf {f}}_{\alpha } = \frac{1}{\sqrt{\bar{p}^{2}+\bar{\mu }^{2}}}(\mu \bar{p}\cos \gamma {\mathbf {j}}_{1}+\mu \bar{p}\sin \gamma {\mathbf { j}}_{2}+\bar{\mu }p{\mathbf {j}}_{3}), \nonumber \\ {\mathbf {f}}_{2}\,\equiv\,& {} {\mathbf {f}}_{\beta } = \frac{1}{\sqrt{\bar{p}^{2}+\bar{\mu } ^{2}}}(\bar{\mu }p\cos \gamma {\mathbf {j}}_{1}+\bar{\mu }p\sin \gamma {\mathbf {j}} _{2}-\mu \bar{p}{\mathbf {j}}_{3}),\nonumber \\ {\mathbf {f}}_{3}\,\equiv\,& {} {\mathbf {f}}_{\gamma } = -\sin \gamma {\mathbf {j}}_{1}+\cos \gamma {\mathbf {j}}_{2}. \end{aligned}$$
    (97)

    The metric coefficients of the prolate spheroidal coordinate system \((\alpha ,\beta ,\gamma )\) are expressed as

    $$\begin{aligned} h_{1}\equiv h_{\alpha }= & {} c\sqrt{\mu ^{2}-p^{2}}\equiv 1/h,\quad h_{2}\equiv h_{\beta }=c\sqrt{\mu ^{2}-p^{2}}\equiv 1/h, \nonumber \\ h_{3}\equiv h_{\gamma }= & {} c\bar{\mu }\bar{p}\equiv 1/\bar{h}. \end{aligned}$$
    (98)
  • Oblate spheroidal coordinate system

    Third, when the surface \(\varGamma ^{(i)}\) exhibits an oblate spheroidal form, the appropriate orthogonal curvilinear coordinate system is naturally the oblate spheroidal coordinate one \((\alpha ,\beta ,\gamma )\) with \(y_{1}\equiv \alpha \in [0,+\infty ]\), \(y_{3}\equiv \gamma \in [0,2\pi ]\) and \(y_{2}\equiv \beta \in [0,\pi ]\). As before, by defining the following additional notations:

    $$\begin{aligned} p= & {} \cos \beta ,\;\bar{p}=\sqrt{1-p^{2}}=\sin \beta ,\;\mu =\sinh \alpha ,\; \bar{\mu }=\sqrt{\mu ^{2}+1}=\cosh \alpha , \nonumber \\ \eta= & {} \iota \sinh \alpha =\iota \mu ,\;\bar{\eta }=\sqrt{\eta ^{2}-1} =\iota \cosh \alpha =\iota \bar{\mu },\;w=a/b, \end{aligned}$$
    (99)

    where \(\iota =\sqrt{-1}\); b and a (\(b>a\), or equivalently \(w=a/b<1\)) are the equatorial radius and the distance from center to pole along the symmetry axis of the spheroidal surface, respectively, the connection between the oblate spheroidal coordinates \((\alpha ,\beta ,\gamma )\) and the Cartesian coordinates \((x_{1},x_{2},x_{3})\) is specified as follows:

    $$\begin{aligned} x_{1}=c\bar{p}\bar{\mu }\cos \gamma ,\quad x_{2}=c\bar{p}\bar{\mu }\sin \gamma ,\quad x_{3}=cp\mu , \end{aligned}$$
    (100)

    where \(c=a/\mu\) is the distance from the focal point to the center of spheroidal surface. The oblate spheroidal coordinate system \((\alpha ,\beta ,\gamma )\) is relative to the oblate spheroidal orthonormal basis \(\{{\mathbf {f}} _{\alpha },{\mathbf {f}}_{\beta },{\mathbf {f}}_{\gamma }\}\) given by

    $$\begin{aligned} {\mathbf {f}}_{1}\,\equiv\, & {} {\mathbf {f}}_{\alpha }=\frac{1}{\sqrt{{p}^{2}+{\mu }^{2}}} (\mu \bar{p}\cos \gamma {\mathbf {j}}_{1}+\mu \bar{p}\sin \gamma {\mathbf {j}}_{2}+ \bar{\mu }p{\mathbf {j}}_{3}), \nonumber \\ {\mathbf {f}}_{2}\,\equiv\, & {} {\mathbf {f}}_{\beta }=\frac{1}{\sqrt{{p}^{2}+{\mu }^{2}}} (\bar{\mu }p\cos \gamma {\mathbf {j}}_{1}+\bar{\mu }p\sin \gamma {\mathbf {j}} _{2}-\mu \bar{p}{\mathbf {j}}_{3}),\nonumber \\ {\mathbf {f}}_{3}\,\equiv\, & {} {\mathbf {f}}_{\gamma }=-\sin \gamma {\mathbf {j}}_{1}+\cos \gamma {\mathbf {j}}_{2}. \end{aligned}$$
    (101)

    The metric coefficients of the oblate spheroidal coordinate system \((\alpha ,\beta ,\gamma )\) are determined by

    $$\begin{aligned} h_{1}\equiv h_{\alpha }= & {} c\sqrt{p^{2}-\eta ^{2}}=1/h,\;h_{2}\equiv h_{\beta }=c\sqrt{p^{2}-\eta ^{2}}=1/h, \nonumber \\ h_{3}\equiv h_{\gamma }= & {} -\iota c\bar{\eta }\bar{p}=1/\bar{h}. \end{aligned}$$
    (102)

Appendix 2: The expressions of \(F_{nm}(\mu _{0})\), \(L_{nm}(\mu _{0})\), \(J_{nm}(\mu _{0})\) and \(W_{nm}(\mu _{0})\) in (40)–(45) and (32)–(37) as well as the ones of \(F_{nm}(\eta _{0})\), \(L_{nm}( \eta _{0})\), \(J_{nm}(\eta _{0})\) and \(W_{nm}(\eta _{0})\) in (64)–(69) and (56 )–(61)

  • Case of prolate spheroidal inclusion

    $$\begin{aligned} F_{nm}(\mu _{0})= & {} -\frac{2n+1}{2}\int _{-1}^{1}\frac{\lambda C_{q}k_{i}p\bar{p }^{2}}{c\bar{\mu }_{0}\sqrt{(\mu _{0}^{2}-p^{2})^{3}}} \times P_{m}(\mu _{0})P_{m}^{ \prime }(p)P_{n}(p)\hbox {d}p \nonumber \\&+\frac{2n+1}{2}\int _{-1}^{1}\frac{\lambda C_{q}k_{i}m(m+1)}{c\bar{\mu }_{0} \sqrt{\mu _{0}^{2}-p^{2}}}P_{m}(\mu _{0})P_{m}(p)P_{n}(p)\hbox {d}p, \end{aligned}$$
    (103)
    $$\begin{aligned} L_{nm}(\mu _{0})= & {} -\frac{2n+1}{2n(n+1)}\int _{-1}^{1}\frac{\lambda C_{q}k_{i}p \bar{p}^{2}}{c\bar{\mu }_{0}\sqrt{(\mu _{0}^{2}-p^{2})^{3}}} P^{1}_{m}(\mu _{0})P_{m}^{1\prime }(p)P^{1}_{n}(p)\hbox {d}p \nonumber \\&+\frac{2n+1}{2n(n+1)}\int _{-1}^{1}\frac{\lambda C_{q}k_{i}\sqrt{ \mu _{0}^{2}-p^{2}}}{c\bar{\mu }^{3}_{0}\bar{p}^{2}}P^{1}_{m}( \mu _{0})P^{1}_{m}(p)P^{1}_{n}(p)\hbox {d}p \nonumber \\&-\frac{2n+1}{2n(n+1)}\int _{-1}^{1}\frac{\lambda C_{q}k_{i}}{c\bar{\mu }_{0} \sqrt{\mu _{0}^{2}-p^{2}}}P^{1}_{m}(\mu _{0})P^{1}_{n}(p)[-mP_{m+1}^{1 \prime }(p) \nonumber \\&+(m+1)P_{m}^{1}(p)+(m+1)pP_{m}^{1\prime }(p)]\hbox {d}p. \end{aligned}$$
    (104)
    $$\begin{aligned} J_{nm}(\mu _{0})= & {} -\frac{2n+1}{2}\int _{-1}^{1}\frac{\lambda C_{t}\bar{\mu } _{0}}{c\sqrt{\mu _{0}^{2}-p^{2}}}P^{\prime }_{m} (\mu _{0})P_{m}(p)P_{n}(p)\hbox { d}p, \end{aligned}$$
    (105)
    $$\begin{aligned} W_{nm}(\mu _{0})= & {} -\frac{2n+1}{2n(n+1)}\int _{-1}^{1}\frac{\lambda C_{t}\bar{ \mu }_{0}}{c\sqrt{\mu _{0}^{2}-p^{2}}} \times P^{1\prime }_{m}( \mu _{0})P^{1}_{m}(p)P^{1}_{n}(p)\hbox {d}p. \end{aligned}$$
    (106)
  • Case of oblate spheroidal inclusion

    $$\begin{aligned} F_{nm}(\eta _{0})= & {} \frac{2n+1}{2}\int _{-1}^{1}\frac{\lambda C_{q}k_{i}p\bar{p}^{2}}{c\bar{\eta }_{0}\sqrt{(p^{2} -\eta _{0}^{2})^{3}}}P_{m}(\eta _{0})P_{m}^{ \prime }(p)P_{n}(p)\hbox {d}p \nonumber \\&+\frac{2n+1}{2}\int _{-1}^{1}\frac{\lambda C_{q}k_{i}m(m+1)}{c\bar{\eta }_{0} \sqrt{p^{2}-\eta _{0}^{2}}}P_{m}(\eta _{0})P_{m}(p)P_{n}(p)\hbox {d}p, \end{aligned}$$
    (107)
    $$\begin{aligned} L_{nm}(\eta _{0})= & {} \frac{2n+1}{2n(n+1)} \int _{-1}^{1}\frac{\lambda C_{q}k_{i}p \bar{p}^{2}}{c\bar{\eta }_{0}\sqrt{(p^{2}-\eta _{0}^{2})^{3}}} P^{1}_{m}(\eta _{0})P_{m}^{1\prime }(p)P^{1}_{n}(p)\hbox {d}p \nonumber \\&-\frac{2n+1}{2n(n+1)}\int _{-1}^{1}\frac{\lambda C_{q}k_{i}\sqrt{ p^{2}-\eta _{0}^{2}}}{c\bar{\eta }^{3}_{0}\bar{p}^{2}}P^{1}_{m}( \eta _{0})P^{1}_{m}(p)P^{1}_{n}(p)\hbox {d}p \nonumber \\&-\frac{2n+1}{2n(n+1)}\int _{-1}^{1} \frac{\lambda C_{q}k_{i}}{c\bar{\eta }_{0} \sqrt{p^{2}-\eta _{0}^{2}}}P^{1}_{m}(\eta _{0})P^{1}_{n}(p)[-mP_{m+1}^{1 \prime }(p) \nonumber \\&+(m+1)P_{m}^{1}(p)+(m+1)pP_{m}^{1\prime }(p)]\hbox {d}p. \end{aligned}$$
    (108)
    $$\begin{aligned} J_{nm}(\eta _{0})= & {} -\frac{2n+1}{2}\int _{-1}^{1} \frac{\lambda C_{t}\bar{\eta } _{0}}{c\sqrt{p^{2}-\eta _{0}^{2}}}P^{\prime }_{m}(\eta _{0})P_{m}(p)P_{n}(p) \hbox {d}p, \end{aligned}$$
    (109)
    $$\begin{aligned} W_{nm}(\eta _{0})= & {} -\frac{2n+1}{2n(n+1)} \int _{-1}^{1}\frac{\lambda C_{t}\bar{ \eta }_{0}}{c\sqrt{p^{2}-\eta _{0}^{2}}}P^{1\prime }_{m}( \eta _{0})P^{1}_{m}(p)P^{1}_{n}(p)\hbox {d}p. \end{aligned}$$
    (110)

Appendix 3: Expressions of the matrix \(\left[ {\mathbf {Y}}_{1}\right]\) and \(\left[ {\mathbf {Z}}_{1}\right]\) in (46) and \(\left[ {\mathbf {Y}} _{2}\right]\) and \(\left[ {\mathbf {Z}}_{2}\right]\) in (70)

$$\begin{aligned} \left[ {\mathbf {Y}}_{1}\right]= & {} \left[ \begin{array}{ccc} \left[ {\mathbf {Y}}_{1}^{(11)}\right] &{} \left[ {\mathbf {0}}\right] &{} \left[ {\mathbf {0}}\right] \\ \left[ {\mathbf {0}}\right] &{} \left[ {\mathbf {Y}}_{1}^{(22)}\right] &{} \left[ {\mathbf {0}}\right] \\ \left[ {\mathbf {0}}\right] &{} \left[ {\mathbf {0}}\right] &{} \left[ {\mathbf {Y}}_{1}^{(33)}\right] \\ &{} &{}\end{array}\right] ,\\ \left[ {\mathbf {Z}}_{1} \right]= & {} -[E_{3}^{0}cP_{1}(\mu _{0}),0, \ldots , 0, k_{0}E_{3}^{0}cP_{1}^{\prime }(\mu _{0}),0, \ldots , 0, E_{1}^{0}cP_{1}^{1}(\mu _{0}),0, \ldots , 0, k_{0}E_{1}^{0}cP_{1}^{1\prime }(\mu _{0}),0, \ldots , 0,E_{2}^{0}cP_{1}^{1}(\mu _{0}),0, \ldots , 0,k_{0}E_{2}^{0}cP_{1}^{1\prime }(\mu _{0}),0, \ldots , 0]^{T} \end{aligned}$$

where

$$\begin{aligned} \left[ {\mathbf {Y}}_{1}^{(11)} \right]= & {} \left[ \begin{array}{cccccccc} P_{1}(\mu _{0})-J_{11} &{} -J_{12} &{} \cdots &{} -J_{1N} &{} -Q_{1}(\mu _{0}) &{} 0 &{} \cdots &{} 0 \\ -J_{21} &{} P_{2}(\mu _{0})-J_{22} &{} \cdots &{} -J_{2N} &{} 0 &{}-Q_{2}(\mu _{0}) &{} \cdots &{} 0 \\ \vdots &{} \vdots &{} \ddots &{} \vdots &{} \vdots &{}\vdots &{} \ddots &{} \vdots \\ -J_{N1} &{} -J_{N2} &{} \cdots &{} P_{N}(\mu _{0}) -J_{NN} &{} 0 &{}0 &{} \cdots &{} -Q_{N}(\mu _{0}) \\ k_{i}P_{1}^{\prime }(\mu _{0})-F_{11} &{} -F_{12} &{} \cdots &{} -F_{1N} &{} -k_{0}Q_{1}^{\prime }(\mu _{0}) &{} 0 &{} \cdots &{} 0 \\ -F_{21} &{} k_{i}P_{2}^{\prime }(\mu _{0})-F_{22} &{} \cdots &{} -F_{2N} &{} 0 &{}-k_{0}Q_{2}^{\prime }(\mu _{0}) &{} \cdots &{} 0 \\ \vdots &{} \vdots &{} \ddots &{} \vdots &{} \vdots &{}\vdots &{} \ddots &{} \vdots \\ -F_{N1} &{} -F_{N2} &{} \cdots &{} k_{i}P_{N}^{\prime }(\mu _{0})-F_{NN} &{} 0 &{}0 &{} \cdots &{} -k_{0}Q_{N}^{\prime }(\mu _{0}) \end{array} \right] , \\ \left[ {\mathbf {Y}}_{1}^{(22)} \right]= & {} \left[ {\mathbf {Y}}_{1}^{(33)} \right] = \left[ \begin{array}{cccccccc} P_{1}^{1}(\mu _{0}) - W_{11} &{} -W_{12} &{} \cdots &{} -W_{1N} &{} -Q_{1}^{1}(\mu _{0}) &{} 0 &{} \cdots &{} 0 \\ -W_{21} &{} P_{2}^{1}(\mu _{0}) - W_{22} &{} \cdots &{} -W_{2N} &{} 0 &{}-Q_{2}^{1}(\mu _{0}) &{} \cdots &{} 0 \\ \vdots &{} \vdots &{} \ddots &{} \vdots &{} \vdots &{}\vdots &{} \ddots &{} \vdots \\ -W_{N1} &{} -W_{N2} &{} \cdots &{} P_{N}^{1}(\mu _{0})-W_{NN} &{} 0 &{}0 &{} \cdots &{} -Q_{N}^{1}(\mu _{0}) \\ k_{i}P_{1}^{1\prime }(\mu _{0})-L_{11} &{} -L_{12} &{} \cdots &{} -L_{1N} &{} -k_{0}Q_{1}^{1\prime }(\mu _{0}) &{} 0 &{} \cdots &{} 0 \\ -L_{21} &{} k_{i}P_{2}^{1\prime }(\mu _{0})-L_{22} &{} \cdots &{} -L_{2N} &{} 0 &{}-k_{0}Q_{2}^{1\prime }(\mu _{0}) &{} \cdots &{} 0 \\ \vdots &{} \vdots &{} \ddots &{} \vdots &{} \vdots &{}\vdots &{} \ddots &{} \vdots \\ -L_{N1} &{} -L_{N2} &{} \cdots &{} k_{i}P_{N}^{1\prime }(\mu _{0})-L_{NN} &{} 0 &{}0 &{} \cdots &{} -k_{0}Q_{N}^{1\prime }(\mu _{0}) \end{array} \right] , \end{aligned}$$

and \(\left[ {\mathbf {0}}\right]\) is a null matrix. Note that \(F_{nm}\), \(L_{nm}\), \(J_{nm}\) and \(W_{nm}\) with \(1\le n,m\le N\) are specified by Eqs. (103)–(106).

$$\begin{aligned} \left[ {\mathbf {Y}}_{2} \right]= & {} \left[ \begin{array}{ccc} \left[ {\mathbf {Y}}_{2}^{(11)} \right] &{} \left[ {\mathbf {0}} \right] &{} \left[ {\mathbf {0}} \right] \\ \left[ {\mathbf {0}} \right] &{} \left[ {\mathbf {Y}}_{2}^{(22)} \right] &{} \left[ {\mathbf {0}} \right] \\ \left[ {\mathbf {0}} \right] &{} \left[ {\mathbf {0}} \right] &{} \left[ {\mathbf {Y}}_{2}^{(33)} \right] \\ &{} &{}\end{array}\right] ,\\ \left[ {\mathbf {Z}}_{2} \right]= & {} \iota [E_{3}^{0}cP_{1}(\eta _{0}),0, \ldots , 0, k_{0}E_{3}^{0}cP_{1}^{\prime }(\eta _{0}),0, \ldots , 0, E_{1}^{0}cP_{1}^{1}(\eta _{0}),0, \ldots , 0, k_{0}E_{1}^{0}cP_{1}^{1\prime }(\eta _{0}),0, \ldots , 0,E_{2}^{0}cP_{1}^{1}(\eta _{0}),0, \ldots , 0,k_{0}E_{2}^{0}cP_{1}^{1\prime }(\eta _{0}),0, \ldots , 0]^{T} \end{aligned}$$

where

$$\begin{aligned} \left[ {\mathbf {Y}}_{2}^{(11)} \right]= & {} \left[ \begin{array}{cccccccc} P_{1}(\eta _{0}) - J_{11} &{} -J_{12} &{} \cdots &{} -J_{1N} &{} -Q_{1}(\eta _{0}) &{} 0 &{} \cdots &{} 0 \\ -J_{21} &{} P_{2}(\eta _{0}) -J_{22} &{} \cdots &{} -J_{2N} &{} 0 &{}-Q_{2}(\eta _{0}) &{} \cdots &{} 0 \\ \vdots &{} \vdots &{} \ddots &{} \vdots &{} \vdots &{}\vdots &{} \ddots &{} \vdots \\ -J_{N1} &{} -J_{N2} &{} \cdots &{} P_{N}(\eta _{0})-J_{NN} &{} 0 &{}0 &{} \cdots &{} -Q_{N}(\eta _{0}) \\ k_{i}P_{1}^{\prime }(\eta _{0})-F_{11} &{} -F_{12} &{} \cdots &{} -F_{1N} &{} -k_{0}Q_{1}^{\prime }(\eta _{0}) &{} 0 &{} \cdots &{} 0 \\ -F_{21} &{} k_{i}P_{2}^{\prime }(\eta _{0})-F_{22} &{} \cdots &{} -F_{2N} &{} 0 &{}-k_{0}Q_{2}^{\prime }(\eta _{0}) &{} \cdots &{} 0 \\ \vdots &{} \vdots &{} \ddots &{} \vdots &{} \vdots &{}\vdots &{} \ddots &{} \vdots \\ -F_{N1} &{} -F_{N2} &{} \cdots &{} k_{i}P_{N}^{\prime }(\eta _{0})-F_{NN} &{} 0 &{}0 &{} \cdots &{} -k_{0}Q_{N}^{\prime }(\eta _{0}) \end{array} \right] , \\ \left[ {\mathbf {Y}}_{2}^{(22)} \right]= & {} \left[ {\mathbf {Y}}_{2}^{(33)} \right] = \left[ \begin{array}{cccccccc} P_{1}^{1}(\eta _{0})-W_{11} &{} -W_{12} &{} \cdots &{} -W_{1N} &{} -Q_{1}^{1}(\eta _{0}) &{} 0 &{} \cdots &{} 0 \\ -W_{21} &{} P_{2}^{1}(\eta _{0})-W_{22} &{} \cdots &{} -W_{2N} &{} 0 &{}-Q_{2}^{1}(\eta _{0}) &{} \cdots &{} 0 \\ \vdots &{} \vdots &{} \ddots &{} \vdots &{} \vdots &{}\vdots &{} \ddots &{} \vdots \\ -W_{N1} &{} -W_{N2} &{} \cdots &{} P_{N}^{1}(\eta _{0})-W_{NN} &{} 0 &{}0 &{} \cdots &{} -Q_{N}^{1}(\eta _{0}) \\ k_{i}P_{1}^{1\prime }(\eta _{0})-L_{11} &{} -L_{12} &{} \cdots &{} -L_{1N} &{} -k_{0}Q_{1}^{1\prime }(\eta _{0}) &{} 0 &{} \cdots &{} 0 \\ -L_{21} &{} k_{i}P_{2}^{1\prime }(\eta _{0})-L_{22} &{} \cdots &{} -L_{2N} &{} 0 &{}-k_{0}Q_{2}^{1\prime }(\eta _{0}) &{} \cdots &{} 0 \\ \vdots &{} \vdots &{} \ddots &{} \vdots &{} \vdots &{}\vdots &{} \ddots &{} \vdots \\ -L_{N1} &{} -L_{N2} &{} \cdots &{} k_{i}P_{N}^{1\prime }(\eta _{0})-L_{NN} &{} 0 &{}0 &{} \cdots &{} -k_{0}Q_{N}^{1\prime }(\eta _{0}) \end{array} \right] , \end{aligned}$$

with \(F_{nm}\), \(L_{nm}\), \(J_{nm}\) and \(W_{nm}\) with \(1\le n,m\le N\) provided by Eqs. (107)–(110).

Appendix 4: Derivation of Eqs. (73) and (74)

Due to the assumption that, in each step of the replace process, spheroidal gas-filled inclusions are randomly distributed and orientated into an isotropic porous material given from the previous step, the new porous material obtained will be also isotropic. By applying Eq. (15) together with Eq. (16), we obtain

$$\begin{aligned} k(t+\varDelta t){\mathbf {I}}=\,& {} k(t){\mathbf {I}} + {\mathcal {D}}k(t){\mathbf {I}} \nonumber \\= & {} k(t){\mathbf {I}} +\frac{c_{i}\varDelta t}{1+c_{i}\varDelta t}[k_i-k(t)]\oint [{\mathbf {R}}\cdot {\mathbf {F}} (\hbox {Kn},\alpha , \alpha _E, \xi ,k_i/k(t))\cdot {\mathbf {R}}^{T}]\hbox {d}{\mathbf {n}} \end{aligned}$$
(111)

where \(k(t+\varDelta t)\) is the effective thermal conductivity of the new isotropic porous material while k(t) is the effective thermal conductivity of the already constructed isotropic porous material of the previous step and \(\oint \bullet \hbox {d}{\mathbf {n}}\) denotes the average over all randomly spatial orientations of spheroidal gas-filled inclusions which is defined by

$$\begin{aligned} \oint \bullet \hbox {d}{\mathbf {n}} = \frac{1}{8\pi ^{2}}\int _{\phi =0}^{2\pi }\int _{\theta =0}^{\pi } \int _{\gamma =0}^{2\pi }\bullet \sin {\theta }\hbox {d} \phi \hbox {d}\theta \hbox {d}\gamma . \end{aligned}$$
(112)

In addition, \({\mathbf {R}}\) in Eq. (111) is the rotation matrix between the global coordinate basis \(\{{\mathbf {j}}_{1},{\mathbf {j}}_{2}, {\mathbf {j}}_{3}\}\) and the local coordinate basis \(\{{\mathbf {j}}^{\prime }_{1},{\mathbf {j}}^{\prime }_{2}, {\mathbf {j}}^{\prime }_{3}\}\) associated to an arbitrary orientated inclusion and takes the following form

$$\begin{aligned} {\mathbf {R}}(\phi ,\theta ,\gamma ) = \begin{bmatrix} \cos \phi \sin \theta&\quad \sin \phi \sin \theta&\quad \cos \theta \\ \cos \phi \cos \theta \cos \gamma - \sin \phi \sin \gamma&\quad \sin \phi \cos \theta \cos \gamma +\sin \gamma \cos \phi&\quad -\sin \theta \cos \gamma \\ -\sin \gamma \cos \phi \cos \theta -\cos \gamma \sin \phi&\quad -\sin \phi \sin \gamma \cos \theta +\cos \gamma \cos \phi&\quad \sin \gamma \sin \theta \end{bmatrix} \end{aligned}$$
(113)

and \({\mathbf {R}}^{T}\) designates the transpose of the matrix \({\mathbf {R}}\); \({\mathbf {R}}\cdot {\mathbf {F}}(\hbox {Kn},\alpha , \alpha _E, \xi ,k_i/k(t))\cdot {\mathbf {R}}^{T}\) is the transformation of the generalized localization tensor \({\mathbf {F}}(\hbox {Kn},\alpha , \alpha _E, \xi ,k_i/k(t))\) after changing from the local coordinate system to the global coordinate one. It is clear that Eq. (111) is equivalent to

$$\begin{aligned} k(t+\varDelta t)= & {} k(t)+ {\mathcal {D}}k(t) = k(t) +\frac{c_{i}\varDelta t}{1+c_{i}\varDelta t}[k_i-k(t)]f(\hbox {Kn},\alpha , \alpha _E, \xi ,k_i/k(t)) \end{aligned}$$
(114)

where \(f(\hbox {Kn},\alpha , \alpha _E, \xi ,k_i/k(t))\) is given by

$$\begin{aligned} f(\hbox {Kn},\alpha , \alpha _E, \xi ,k_i/k(t)) = \frac{1}{3}\oint \hbox {Tr}[{\mathbf {R}}\cdot {\mathbf {F}}(\hbox {Kn},\alpha , \alpha _E, \xi ,k_i/k(t))\cdot {\mathbf {R}}^{T}]\hbox {d}{\mathbf {n}}. \end{aligned}$$
(115)

Since \(\hbox {Tr}[{\mathbf {R}}\cdot {\mathbf {F}}\cdot {\mathbf {R}}^{T}] = \hbox {Tr}[{\mathbf {F}}]\), the expression (115) of \(f(\hbox {Kn},\alpha , \alpha _E, \xi ,k_i/k(t))\) reduces so that to (74).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Le Quang, H., Xu, Y. & He, QC. Size- and shape-dependent effective conductivity of porous media with spheroidal gas-filled inclusions. Meccanica 53, 2743–2772 (2018). https://doi.org/10.1007/s11012-018-0864-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-018-0864-9

Keywords

Navigation