Skip to main content
Log in

Stability of natural convection in a vertical non-Newtonian fluid layer with an imposed magnetic field

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

A numerical study has been conducted to analyze the influence of a uniform horizontal magnetic field on the stability of buoyancy driven parallel shear flow in a differentially heated vertical layer of an electrically conducting couple stress fluid; a type of non-Newtonian fluid. Within the framework of linear stability theory, the resulting complex generalized eigenvalue problem is solved numerically using the Chebyshev collocation method with QZ algorithm. The critical Grashof number \(G_{c}\) and the corresponding wave number \(\alpha_{c}\) and wave speed \(c_{c}\) are computed for a wide range of couple stress parameter \(\varLambda_{c}\), Prandtl number \(Pr\) and Hartmann number \(M\). It is found that the value of \(Pr\) at which the instability switches over from stationary to travelling-wave mode increases with increasing \(M\) and decreasing \(\varLambda_{c}\). The effect of magnetic field is to delay the onset of instability while an opposite kind of behavior is observed with increasing \(\varLambda_{c}\). The streamlines presented herein demonstrate the development of complex dynamics at the transition mode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

\(\vec{B}\) :

Magnetic induction field

B o :

Uniform external magnetic induction

c :

Wave speed

c r :

Phase velocity

c i :

Growth rate

\(\vec{g}\) :

Acceleration due to gravity

G :

Grashof number

h :

Half-width of the fluid layer

M :

Hartmann number

P :

Total pressure

Pr :

Prandtl number

Pr m :

Magnetic Prandtl number

\(\vec{q} = (u,v,w)\) :

Velocity vector

t :

Time

T :

Temperature

T 1 :

Temperature of the left vertical rigid boundary

T 2 :

Temperature of the right vertical rigid boundary

(xyz):

Cartesian co-ordinates

α :

Vertical wave number

α T :

Volumetric thermal expansion coefficient

β :

Temperature gradient

θ :

Amplitude of perturbed temperature

κ :

Thermal diffusivity

λ :

Couple stress viscosity

Λ c :

Couple stress parameter

μ :

Magnetic permeability

μ d :

Dynamic viscosity

ν :

Kinematic viscosity

ρ :

Fluid density

ρ 0 :

Reference density at T 0

σ :

Electrical conductivity

ϕ :

Amplitude of perturbed velocity

ψ :

Amplitude of perturbed magnetic induction

b :

Basic state

References

  1. Vest CM, Arpaci VS (1969) Stability of natural convection in a vertical slot. J Fluid Mech 36:1–15

    Article  ADS  MATH  Google Scholar 

  2. Korpela SA, Gözüm D, Baxi CB (1973) On the stability of the conduction regime of natural convection in a vertical slot. Int J Heat Mass Transf 16:1683–1690

    Article  Google Scholar 

  3. Bergholz RF (1978) Instability of steady natural convection in a vertical fluid layer. J Fluid Mech 84:743–768

    Article  ADS  Google Scholar 

  4. McBain GD, Armfield SW (2004) Natural convection in a vertical slot: accurate solution of the linear stability equations. ANZIAM J 45:92–105

    Article  MathSciNet  MATH  Google Scholar 

  5. Takashima M, Hamabata H (1984) The stability of natural convection in a vertical layer of dielectric fluid in the presence of a horizontal ac electric field. J Phys Soc Jap 53:1728–1736

    Article  ADS  Google Scholar 

  6. Shankar BM, Kumar J, Shivakumara IS, Naveen Kumar SB (2016) Effect of horizontal AC electric field on the stability of natural convection in a vertical dielectric fluid layer. J Appl Fluid Mech 9:3073–3086

    Google Scholar 

  7. Shankar BM, Kumar J, Shivakumara IS (2015) Effect of horizontal alternating current electric field on the stability of natural convection in a dielectric fluid saturated vertical porous layer. J Heat Transf 137:042501

    Article  Google Scholar 

  8. Takashima M (1994) The stability of natural convection in a vertical layer of electrically conducting fluid in the presence of a transverse magnetic fluid. Fluid Dyn Res 14:121–134

    Article  ADS  Google Scholar 

  9. Belyaev AV, Smorodin BL (2010) The stability of ferrofluid flow in a vertical layer subject to lateral heating and horizontal magnetic field. J Magn Magn Mater 322:2596–2606

    Article  ADS  Google Scholar 

  10. Shankar BM, Kumar J, Shivakumara IS (2017) Magnetohydrodynamic stability of natural convection in a vertical porous slab. J Magn Magn Mater 421:152–164

    Article  ADS  Google Scholar 

  11. Gözüm D, Arpaci VS (1974) Natural convection of viscoelastic fluids in a vertical slot. J Fluid Mech 64:439–448

    Article  ADS  MATH  Google Scholar 

  12. Takashima M (1993) The stability of natural convection in a vertical layer of viscoelastic liquid. Fluid Dyn Res 11:139–152

    Article  ADS  Google Scholar 

  13. Shankar BM, Shivakumara IS (2017) On the stability of natural convection in a porous vertical slab saturated with an Oldroyd-B fluid. Theor Comput Fluid Dyn 31:221–231

    Article  Google Scholar 

  14. Shankar BM, Shivakumara IS (2017) Effect of local thermal nonequilibrium on the stability of natural convection in an Oldroyd-B fluid saturated vertical porous layer. ASME J Heat Transf 139:041001–041010

    Article  Google Scholar 

  15. Stokes VK (1966) Couple stresses in fluids. Phys Fluids 9:1709–1715

    Article  ADS  Google Scholar 

  16. Ariman TT, Sylvester ND (1973) Microcontinuum fluid mechanics: a review. Int J Eng Sci 11:905–930

    Article  MATH  Google Scholar 

  17. Ariman TT, Sylvester ND (1974) Applications of microcontinuum fluid mechanics. Int J Eng Sci 12:273–293

    Article  MATH  Google Scholar 

  18. Kh S (2008) Mekheimer, Effect of the induced magnetic field on peristaltic flow of a couple stress fluid. Phys Lett A 372:4271–4278

    Article  Google Scholar 

  19. Jain JK, Stokes VK (1972) Effects of couple stresses on the stability of plane Poiseuille flow. Phys Fluids 15:977–980

    Article  ADS  MATH  Google Scholar 

  20. Ahmadi G (1979) Stability of a cosserat fluid layer heated from below. Acta Mech 31:243–252

    Article  MATH  Google Scholar 

  21. Shankar BM, Kumar J, Shivakumara IS (2014) Stability of natural convection in a vertical couple stress fluid layer. Int J Heat Mass Transf 78:447–459

    Article  Google Scholar 

  22. Shankar BM, Kumar J, Shivakumara IS (2016) Stability of natural convection in a vertical dielectric couple stress fluid layer in the presence of a horizontal ac electric field. Appl Math Model 40:5462–5481

    Article  MathSciNet  Google Scholar 

  23. Stokes VK (1968) Effects of couple stresses in fluids on hydromagnetic channel flows. Phys Fluids 11:1131–1133

    Article  ADS  Google Scholar 

  24. Kaddeche S, Henry D, Benhadid H (2003) Magnetic stabilization of the buoyant convection between infinite horizontal walls with a horizontal temperature gradient. J Fluid Mech 480:185–216

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Moler CB, Stewart GW (1973) An algorithm for generalized matrix eigenvalue problems. SIAM (Soc Indian Appl Math) J Numer Anal 10:241–256

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We thank the anonymous referees for their constructive comments, which helped us to improve the manuscript. The first author BMS wishes to thank the authorities of his University for their encouragement and support and the fourth author KRR wishes to thank the DST, New Delhi for granting him a fellowship under the Inspire program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. M. Shankar.

Appendix

Appendix

For the given physical domain right and left wall corresponds to \(j = 0\) and \(j = N\), respectively. Substituting Eq. (28) into Eqs. (25) and (26), the resulting discretized form of governing equations are

$$\begin{aligned} i\alpha G\left[ {(w_{b} - c)\left( {\left( {1 - x_{j}^{2} } \right)^{2} \sum\limits_{k = 0}^{N} {B_{jk} \phi_{k} } - 8x_{j} \left( {1 - x_{j}^{2} } \right)\sum\limits_{k = 0}^{N} {A_{jk} \phi_{k} } + \left( {8x_{j}^{2} - 4\left( {1 - x_{j}^{2} } \right)} \right)\phi_{j} } \right) - \alpha^{2} (w_{b} - c)\phi_{j} - \frac{{d^{2} w_{b} }}{{dx^{2} }}\phi_{j} } \right] \\ \quad & = \,\left[ {\left( {x_{j}^{2} - 1} \right)^{2} \sum\limits_{k = 0}^{N} {E_{jk} \phi_{k} } + 16x_{j} \left( {x_{j}^{2} - 1} \right)\sum\limits_{k = 0}^{N} {C_{jk} \phi_{k} } + 24\left( {3x_{j}^{2} - 1} \right)\sum\limits_{k = 0}^{N} {B_{jk} \phi_{k} } + 96x_{j} \sum\limits_{k = 0}^{N} {A_{jk} \phi_{k} } + 24\phi_{j} } \right] \\ & \quad \quad + \,\alpha^{4} \phi_{j} - 2\alpha^{2} \left[ {\left( {1 - x_{j}^{2} } \right)^{2} \sum\limits_{k = 0}^{N} {B_{jk} \phi_{k} } - 8x_{j} \left( {1 - x_{j}^{2} } \right)\sum\limits_{k = 0}^{N} {A_{jk} \phi_{k} } + \left( {8x_{j}^{2} - 4\left( {1 - x_{j}^{2} } \right)} \right)\phi_{j} } \right] \\ & \quad \quad - \,\frac{1}{{\varLambda_{c}^{2} }}\left\{ {\begin{array}{*{20}l} {\left( {x_{j}^{2} - 1} \right)^{2} \sum\limits_{k = 0}^{N} {H_{jk} \phi_{k} } + 24x_{j} \left( {x_{j}^{2} - 1} \right)\sum\limits_{k = 0}^{N} {F_{jk} \phi_{k} } } \hfill \\ { + 60\left( {3x_{j}^{2} - 1} \right)\sum\limits_{k = 0}^{N} {E_{jk} \phi_{k} } + 480x_{j} \sum\limits_{k = 0}^{N} {C_{jk} \phi_{k} } + 360\sum\limits_{k = 0}^{N} {B_{jk} \phi_{k} } } \hfill \\ { - 3\alpha^{2} \left( \begin{aligned} \left( {x_{j}^{2} - 1} \right)^{2} \sum\limits_{k = 0}^{N} {E_{jk} \phi_{k} } + 16x_{j} \left( {x_{j}^{2} - 1} \right)\sum\limits_{k = 0}^{N} {C_{jk} \phi_{k} } + 24\left( {3x_{j}^{2} - 1} \right)\sum\limits_{k = 0}^{N} {B_{jk} \phi_{k} } + 96x_{j} \sum\limits_{k = 0}^{N} {A_{jk} \phi_{k} } + 24\phi_{j} \hfill \\ \end{aligned} \right)} \hfill \\ { + 3\alpha^{4} \left( {\left( {1 - x_{j}^{2} } \right)^{2} \sum\limits_{k = 0}^{N} {B_{jk} \phi_{k} } - 8x_{j} \left( {1 - x_{j}^{2} } \right)\sum\limits_{k = 0}^{N} {A_{jk} \phi_{k} } + \left( {8x_{j}^{2} - 4\left( {1 - x_{j}^{2} } \right)} \right)\phi_{j} } \right) - \alpha^{6} \phi_{j} } \hfill \\ \end{array} } \right. \\ & \quad \quad - \,\sum\limits_{K = 0}^{N} {A_{jk} \theta_{k} - M^{2} \left( {\left( {1 - x_{j}^{2} } \right)^{2} \sum\limits_{k = 0}^{N} {B_{jk} \phi_{k} } - 8x_{j} \left( {1 - x_{j}^{2} } \right)\sum\limits_{k = 0}^{N} {A_{jk} \phi_{k} } + \left( {8x_{j}^{2} - 4\left( {1 - x_{j}^{2} } \right)} \right)\phi_{j} } \right)} , \quad j = 1\left( 1 \right)N - 1 \\ \end{aligned}$$
(34)
$$(w_{b} - c)\theta_{j} + \phi_{j} = \frac{1}{i\alpha \,Pr\,G}\left[ {\sum\limits_{k = 0}^{N} {B_{jk} \theta_{k} - \alpha^{2} \theta_{j} } } \right],\,\,j = 1\left( 1 \right)N - 1$$
(35)

with the corresponding boundary conditions

$$(1 - x_{j}^{2} )^{2} \sum\limits_{k = 0}^{N} {C_{jk} \phi_{k} } - 12x_{j} (1 - x_{j}^{2} )\sum\limits_{k = 0}^{N} {B_{jk} \phi_{k} } - 12(1 - 3x_{j}^{2} )\sum\limits_{k = 0}^{N} {A_{jk} \phi_{k} } + 24x_{j} \phi_{j} = 0, {\text{j}} = 0 \& {\text{N}}$$
(36)
$$\theta_{j} = 0,j = 0 \& {\text{N}}$$
(37)

where

$$A_{jk} = \left\{ {\begin{array}{*{20}l} {\frac{{\varGamma_{j} \left( { - 1} \right)^{k + j} }}{{\varGamma_{k} \left( {x_{j} - x_{k} } \right)}}} \hfill & {j \ne k} \hfill \\ {\frac{{x_{j} }}{{2\left( {1 - x_{j}^{2} } \right)}}} \hfill & {1 \le j = k \le N - 1} \hfill \\ {\frac{{2N^{2} + 1}}{6}} \hfill & {j = k = 0} \hfill \\ { - \frac{{2N^{2} + 1}}{6}} \hfill & {j = k = N} \hfill \\ \end{array} } \right.$$
(38)
$$B_{jk} = A_{jm} \cdot A_{mk} ,\quad C_{jk} = B_{jm} \cdot A_{mk} ,\quad E_{jk} = C_{jm} \cdot A_{mk} ,\quad F_{jk} = E_{jm} \cdot A_{mk} ,\quad H_{jk} = F_{jm} \cdot A_{mk}$$
(39)

with

$$\varGamma_{j} = \left\{ {\begin{array}{*{20}l} 2 \hfill & {j = 0,N} \hfill \\ 1 \hfill & {1 \le j \le N - 1} \hfill \\ \end{array} .} \right.$$

The above equations form the following system of linear algebraic equations

$$\Delta_{1} X = c\,\Delta_{2} X$$
(40)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shankar, B.M., Kumar, J., Shivakumara, I.S. et al. Stability of natural convection in a vertical non-Newtonian fluid layer with an imposed magnetic field. Meccanica 53, 773–786 (2018). https://doi.org/10.1007/s11012-017-0770-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-017-0770-6

Keywords

Navigation