Skip to main content
Log in

Probabilistic buckling analysis of beam-column elements with geometric imperfections and various boundary conditions

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

Although the manufacturing process of structural members has been improved over the last decades, inherent geometric imperfections in slender beam-columns cannot be avoided altogether. Such imperfections largely affect the buckling behavior of the beam by modifying (reducing) the actual critical load in comparison with the theoretically perfect beam idealization. Whereas the deterministic characterization of such imperfections is a rather difficult task that should be performed from case to case, a more general approach would require dealing with imperfections within a probabilistic framework, i.e., treating them as random fields. The aim of this paper is to provide a simple but effective method to characterize probabilistically the response of imperfect beam-column elements based on the stochastic description of the imperfections. The proposed method assumes that the imperfections are expressed through series expansion wherein the critical shapes of the corresponding perfect beam represent the series polynomials. Once the continuum deflection field and the random imperfection field are discretized, some simple closed-form relationships between the imperfection parameters and the main response quantities (e.g. beam deflection and critical load) are established. In contrast to other methods, any type of boundary conditions can be incorporated without computational effort. A few boundary conditions are numerically investigated that clarify how the proposed method can be usefully employed to characterize the buckling response of imperfect beam-column elements probabilistically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Ramm E, Wall W (2004) Shell structures: a sensitive interrelation between physics and numerics. Int J Numer Methods Eng 60:381–427

    Article  MathSciNet  MATH  Google Scholar 

  2. Trahair NS, Bradford MA, Nethercot DA, Gardner L (2008) The behavior and design of steel structures to EC3. Taylor and Francis, New York

    Google Scholar 

  3. Zeinoddini VM, Schafer BW (2012) Simulation of geometric imperfections in cold-formed steel members using spectral representation approach. Thin Walled Struct 60:105–117

    Article  Google Scholar 

  4. Tebedge N, Marek P, Tall L (1969) Column testing procedure. Fritz engineering laboratory, report, no. 351.1. Lehigh University, Bethlehem, Pennsylvania

  5. Itoh Y (1984) Ultimate strength variations of structural steel members. Ph.D. Thesis Nagoya, Nagoya University

  6. Tomonaga K (1971) Actually measured errors in fabrication of Kasumigaseki Building. In: 3rd regional conference proceedings. Muto Institute of Structural Mechanics, Tokyo, Japan

  7. Koiter WT (1963) The effect of axisymmetric imperfections on the buckling of cylindrical shells under axial compression. Proc Koninkl Nederl Akademie van Wetenschappen 66(B):265–279

    MATH  Google Scholar 

  8. Arbocz J, Babcock CD Jr (1969) The effect of general imperfections on the buckling of cylindrical shells. J Appl Mech 36(1):28–38

    Article  MATH  Google Scholar 

  9. Arbocz J, Hol JMAM (1991) Koiter’s stability theory in a computer aided engineering (CAE) environment. Int J Solids Struct 26(9–10):945–973

    MATH  Google Scholar 

  10. Elishakoff I (2000) Uncertain buckling: its past, present and future. Int J Solids Struct 37:6869–6889

    Article  MATH  Google Scholar 

  11. Schafer BW, Grigoriu M, Pekoz T (1998) A probabilistic examination of the ultimate strength of cold-formed steel elements. Thin Walled Struct 31:271–288

    Article  Google Scholar 

  12. Basundhar A, Missoum S (2009) A sampling-based approach for probabilistic design with random fields. Comput Methods Appl Mech Eng 191(47–48):3647–3655

    Article  ADS  MATH  Google Scholar 

  13. Chen NZ, Guedes Soares C (2008) Spectral stochastic finite element analysis of laminated composite plates. Comput Methods Appl Mech Eng 197:4830–4839

    Article  ADS  MATH  Google Scholar 

  14. Craig KJ, Roux WJ (2008) On the investigation of shell buckling due to random geometrical imperfections implemented using Karhunen–Loeve expansions. Int J Numer Methods Eng 73:1715–1726

    Article  MATH  Google Scholar 

  15. Kolanek K, Jendo S (2008) Random field models of geometrically imperfect structures with ‘‘clamped’’ boundary conditions. Prob Eng Mech 23(2):219–226

    Article  Google Scholar 

  16. Papadopoulos V, Papadrakakis M (2004) Finite element analysis of cylindrical panels with random initial imperfections. J Eng Mech 130:867–876

    Article  Google Scholar 

  17. Papadopoulos V, Papadrakakis M (2005) The effect of material and thickness variability on the buckling load of shells with random initial imperfections. Comput Methods Appl Mech Eng 194:1405–1426

    Article  ADS  MATH  Google Scholar 

  18. Papadopoulos V, Iglesis P (2007) The effect of non-uniformly of axial loading on the buckling behavior of shells with random imperfections. Int J Solids Struct 44:6299–6317

    Article  MATH  Google Scholar 

  19. Papadopoulos V, Charmpis DC, Papadrakakis M (2008) A computationally efficient method for the buckling analysis of shells with stochastic imperfections. Comput Mech 43:687–700

    Article  Google Scholar 

  20. Papadopoulos V, Stefanou G, Papadrakakis M (2009) Buckling analysis of imperfect shells with stochastic non-Gaussian material and thickness properties. Int J Solids Struct 46:2800–2808

    Article  MATH  Google Scholar 

  21. Papadopoulos V, Somiris G, Papadrakakis M (2013) Buckling analysis of I-section portal frames with stochastic imperfections. Eng Struct 47:54–66

    Article  Google Scholar 

  22. Schillinger D, Papadopoulos V, Bischoff M, Papadrakakis M (2010) Buckling analysis of imperfect I-section beam-columns with stochastic shell finite elements. Comput Mech 46(3):495–510

    Article  MATH  Google Scholar 

  23. Ikeda K, Murota K, Elishakoff I (1996) Reliability of structures subject to normally distributed initial imperfections. Comput Struct 59:463–469

    Article  MATH  Google Scholar 

  24. Nordgren RP, Conte JP (1999) On one-dimensional random fields with fixed end values. Prob Eng Mech 14:301–310

    Article  Google Scholar 

  25. Most T, Bucher C, Schorling Y (2004) Dynamic stability analysis of non-linear structures with geometrical imperfections under random loading. J Sound Vib 276:381–400

    Article  ADS  Google Scholar 

  26. Day W, Karwowski AJ, Papanicolaou GC (1989) Buckling of randomly imperfect beams. Acta Appl. Math. 17:269–286

    Article  MathSciNet  MATH  Google Scholar 

  27. Bažant ZP, Cedolin L (2003) Stability of structures. Dover Publications Inc., Mineola

    MATH  Google Scholar 

  28. Jones SW, Kirby PA, Nethercot DA (1983) The analysis of frames with semi-rigid connections—a state-of-the-art report. J Constr Steel Res 3(2):2–13

    Article  Google Scholar 

  29. Sakurai S, Ellingwood BR, Kushiyama S (2001) Probabilistic study of the behavior of steel frames with partially restrained connections. Eng Struct 23:1410–1417

    Article  Google Scholar 

  30. Kartal ME, Başağa HB, Bayraktar A, Muvafık M (2010) Effects of semi-rigid connection on structural responses. Electron J Struct Eng 10:22–35

    Google Scholar 

  31. EN 1993-1-1 (2005) Eurocode 3: design of steel structures—part 1–1: general rules and rules for buildings. Comite European de Normalisation (CEN) Brussels, Belgium

  32. Thai HT, Uy B, Kang WH, Hicks S (2016) System reliability evaluation of steel frames with semi-rigid connections. J Constr Steel Res 121:29–39

    Article  Google Scholar 

  33. Papoulis A, Pillai SU (2002) Probability, random variables, and stochastic processes, 4th edn. McGraw-Hill, New York

    Google Scholar 

  34. Falsone G, Settineri D (2013) Explicit solutions for the response probability density function of linear systems subjected to random static loads. Prob Eng Mech 33:86–94

    Article  Google Scholar 

  35. De Domenico D, Falsone G, Laudani R (under review) Probability-based structural response of beams and frames with uncertain semi-rigid connections, J Struct Eng (ASCE)

Download references

Acknowledgements

The authors wish to thank the anonymous Reviewer for the valuable and constructive comments made on an earlier version of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. De Domenico.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Appendix

Appendix

The elements of the \({\mathbf{K}}\) and \(\varLambda\) matrices defined in (10) and (16) are here reported in closed form for a variety of b.c. In the below expressions \(\delta_{nm}\) is the Kronecker delta, and the following positions are made

$$\begin{aligned} f_{n} = 1 + \alpha_{n}^{2} \lambda^{2} ; \, f_{m} = 1 + \alpha_{m}^{2} \lambda^{2} ; \, \eta_{nm} = \frac{l\lambda }{{f_{m} }}\delta_{nm} ; \, \hfill \\ \gamma { = }e^{ - l/\lambda } ; \, \beta_{mn} = \alpha_{m} \alpha_{n} . \hfill \\ \end{aligned}$$
(32)
$$\begin{aligned} {\text{Simply supported beam}} \hfill \\ {\mathbf{K}}_{nm} = 0.5l\delta_{nm} ; \, \hfill \\ {\varvec{\Lambda}}_{nm} = \lambda^{4} \beta_{mn} \frac{{( - ( - 1)^{m} - ( - 1)^{n} )\gamma + 1 + ( - 1)^{m + n} }}{{f_{n} f_{m} }}{\kern 1pt} + \eta_{nm} \hfill \\ \end{aligned}$$
(33)
$$\begin{aligned} {\text{Fixed beam (clamped}}{-}{\text{clamped)}} \hfill \\ {\mathbf{K}}_{nm} = l\left( {1 + 0.5\delta_{nm} } \right); \, \hfill \\ {\varvec{\Lambda}}_{nm} = 2\lambda \frac{{lf_{n} f_{m} + \beta_{mn}^{2} \lambda^{5} (\gamma - 1)}}{{f_{n} f_{m} }} + \eta_{nm} \hfill \\ \end{aligned}$$
(34)
$$\begin{aligned} {\text{Cantilever beam (clamped-free)}} \hfill \\ {\mathbf{K}}_{nm} = \frac{{( - 1)^{m} }}{{\alpha_{m} }} + \frac{{( - 1)^{n} }}{{\alpha_{n} }} + l\left( {1 + 0.5\delta_{nm} } \right); \, \hfill \\ {\varvec{\Lambda}}_{nm} = \frac{{\lambda (2l - \lambda )(f_{n} + f_{m} - 1) + 2\beta_{mn}^{2} \lambda^{5} (l - \lambda )}}{{f_{n} f_{m} }} + \hfill \\ \frac{{( - 1)^{m} \lambda (1 + f_{m} )}}{{\alpha_{m} f_{m} }} + + \frac{{( - 1)^{n} \lambda (1 + f_{n} )}}{{\alpha_{n} f_{n} }} + \frac{{( - 1)^{m + n} \beta_{mn} \lambda^{4} }}{{f_{n} f_{m} }} + \hfill \\ \gamma {\kern 1pt} \lambda^{4} \frac{{\alpha_{m}^{2} f_{n} + \alpha_{n}^{2} f_{m} - \lambda \beta_{mn} (( - 1)^{n} \alpha_{m} + ( - 1)^{m} \alpha_{n} )}}{{f_{n} f_{m} }} + \eta_{nm} \hfill \\ \end{aligned}$$
(35)
$$\begin{aligned} {\text{Guided-hinged beam}} \hfill \\ {\mathbf{K}}_{nm} = 0.5l\delta_{nm} ; \, \hfill \\ {\varvec{\Lambda}}_{nm} = \,\gamma {\kern 1pt} \lambda^{3} \frac{{( - 1)^{n} \alpha_{n} + ( - 1)^{m} \alpha_{m} }}{{f_{n} f_{m} }} + \lambda^{2} \frac{{( - 1)^{m + n} \beta_{mn} \lambda^{2} - 1}}{{f_{n} f_{m} }} + \eta_{nm} \hfill \\ \end{aligned}$$
(36)
$$\begin{aligned} {\text{Guided-clamped beam}} \hfill \\ {\mathbf{K}}_{nm} = ( - 1)^{m + n} l + 0.5l\delta_{nm} ; \, \hfill \\ {\varvec{\Lambda}}_{nm} = \lambda ( - 1)^{m + n} \frac{{2f_{n} f_{m} (l - \lambda ) + \lambda (f_{n} + f_{m} - 1)}}{{f_{n} f_{m} }} - \hfill \\ \lambda^{2} \frac{{1 - ( - 1)^{n} f_{n} - ( - 1)^{m} f_{m} }}{{f_{n} f_{m} }} - \gamma {\kern 1pt} \lambda^{4} \frac{{( - 1)^{m} \alpha_{m}^{2} + ( - 1)^{n} \alpha_{n}^{2} }}{{f_{n} f_{m} }} + \hfill \\ ( - 1)^{m + n} \gamma {\kern 1pt} \lambda^{4} \frac{{\alpha_{m}^{2} f_{n} + \alpha_{n}^{2} f_{m} }}{{f_{n} f_{m} }} + \eta_{nm} \hfill \\ \end{aligned}$$
(37)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

De Domenico, D., Falsone, G. & Settineri, D. Probabilistic buckling analysis of beam-column elements with geometric imperfections and various boundary conditions. Meccanica 53, 1001–1013 (2018). https://doi.org/10.1007/s11012-017-0763-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-017-0763-5

Keywords

Navigation