Skip to main content
Log in

Bending of circular nanoplates with consideration of surface effects

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

Surface effects play a significant role in affecting mechanical properties of micro- and nanosized materials and structures. This paper studies the bending of nanoplates with consideration of surface effects. Surface effects including surface elasticity and surface residual stress are incorporated into the conventional Kirchhoff theory of thin plates. Two typical cases including a concentrated force at the plate center and uniformly distributed loading over a plate surface are analyzed. Explicit expressions for the deflection of simply supported and clamped circular nanoplates are obtained. Bending moments at the plate center exhibit logarithmic singularity for a concentrated force at the center. When ignoring the surface effects, the classical deflections of circular thin plates are recovered. A comparison of the deflections with and without the surface effects clarifies a significant influence of surface effects on the bending behaviors of nanoplates. Surface effects diminish the bending moments and enhance the load-carrying capacity of a nanoplate. Singularity of elastic fields at the plate center is discussed. The obtained results provide helpful guidelines for design and application of graphene and other microscopic structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6:183–191

    Article  ADS  Google Scholar 

  2. Jiang JW, Wang BS, Wang JS et al (2015) A review on the flexural mode of graphene: lattice dynamics, thermal conduction, thermal expansion, elasticity and nanomechanical resonance. J Phys Condens Matter 27:083001

    Article  ADS  Google Scholar 

  3. Wang YF, Liao JH, McBride SP et al (2015) Strong resistance to bending observed for nanoparticle membranes. Nano Lett 15:6732–6737

    Article  ADS  Google Scholar 

  4. Lee C, Wei X, Kysar JW et al (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321:385–388

    Article  ADS  Google Scholar 

  5. Shao Y, Wang J, Wu H et al (2010) Graphene based electrochemical sensors and biosensors: a review. Electroanalysis 22:1027–1036

    Article  Google Scholar 

  6. Yoon HJ, Yang JH, Zhou Z et al (2011) Carbon dioxide gas sensor using a graphene sheet. Sens Actuators B 157:310–313

    Article  Google Scholar 

  7. Ahn JH, Hong BH (2014) Graphene for displays that bend. Nat Nanotechnol 9:737–738

    Article  ADS  Google Scholar 

  8. Berinskii IE, Krivtsov AM, Kudarova AM (2014) Bending stiffness of a graphene sheet. Phys Mesomech 17:356–364

    Article  Google Scholar 

  9. Jomehzadeh E, Pugno NM (2015) Bending stiffening of graphene and other 2D materials via controlled rippling. Compos Part B 83:194–202

    Article  Google Scholar 

  10. Polyzos I, Bianchi M, Rizzi L et al (2015) Suspended monolayer graphene under true uniaxial deformation. Nanoscale 7:13033–13042

    Article  ADS  Google Scholar 

  11. Sharma P, Ganti S, Bhate N (2003) Effect of surfaces on the size-dependent elastic state of nano-inhomogeneities. Appl Phys Lett 82:535–537

    Article  ADS  Google Scholar 

  12. Cammarata RC (1994) Surface and interface stress effects in thin films. Prog Surf Sci 46:1–38

    Article  ADS  Google Scholar 

  13. Ibach H (1997) The role of surface stress in reconstruction, epitaxial growth and stabilization of mesoscopic structures. Surf Sci Rep 29:195–263

    Article  ADS  Google Scholar 

  14. Jing G, Duan H, Sun X et al (2006) Surface effects on elastic properties of silver nanowires: contact atomic-force microscopy. Phys Rev B 73:235409

    Article  ADS  Google Scholar 

  15. Cuenot S, Fretigny C, Demoustier-Champagne S et al (2004) Surface tension effect on the mechanical properties of nanomaterials measured by atomic force microscopy. Phys Rev B 69:165410

    Article  ADS  Google Scholar 

  16. Wang GF, Feng XQ (2007) Effects of surface elasticity and residual surface tension on the natural frequency of microbeams. Appl Phys Lett 90:231904

    Article  ADS  Google Scholar 

  17. He J, Lilley CM (2008) Surface effect on the elastic behavior of static bending nanowires. Nano Lett 8:1798–1802

    Article  ADS  Google Scholar 

  18. Li XF, Zhang H, Lee KY (2014) Dependence of Young’s modulus of nanowires on surface effect. Int J Mech Sci 81:120–125

    Article  Google Scholar 

  19. Wang J, Huang Z, Duan H et al (2011) Surface stress effect in mechanics of nanostructured materials. Acta Mech Solida Sin 24:52–82

    Article  Google Scholar 

  20. Gurtin ME, Murdoch AI (1975) A continuum theory of elastic material surfaces. Arch Ration Mech Anal 57:291–323

    Article  MathSciNet  MATH  Google Scholar 

  21. Gurtin ME, Murdoch AI (1978) Surface stress in solids. Int J Solids Struct 14:431–440

    Article  MATH  Google Scholar 

  22. Lu P, He LH, Lee HP et al (2006) Thin plate theory including surface effects. Int J Solids Struct 43:4631–4647

    Article  MATH  Google Scholar 

  23. Shaat M, Mahmoud FF, Alshorbagy AE et al (2013) Bending analysis of ultra-thin functionally graded Mindlin plates incorporating surface energy effects. Int J Mech Sci 75:223–232

    Article  Google Scholar 

  24. Zhou LG, Huang H (2004) Are surfaces elastically softer or stiffer? Appl Phys Lett 84:1940–1942

    Article  ADS  Google Scholar 

  25. Ru CQ (2010) Simple geometrical explanation of Gurtin–Murdoch model of surface elasticity with clarification of its related versions. Sci China A 53:536–544

    Google Scholar 

  26. Ru CQ (2016) A strain-consistent elastic plate model with surface elasticity. Contin Mech Thermodyn 28:263–273

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. Watson GN (1995) A treatise on the theory of Bessel functions. Cambridge university press, Cambridge

    MATH  Google Scholar 

  28. Shenoy VB (2005) Atomistic calculations of elastic properties of metallic fcc crystal surfaces. Phys Rev B 71:094104

    Article  ADS  Google Scholar 

  29. Timoshenko SP, Woinowsky-Krieger S (1959) Theory of plates and shells. McGraw-hill, New York

    MATH  Google Scholar 

  30. Lei XW, Natsuki T, Shi JX et al (2012) Surface effects on the vibrational frequency of double-walled carbon nanotubes using the nonlocal Timoshenko beam model. Compos Part B 43:64–69

    Article  Google Scholar 

  31. Son D, hyun Jeong J, Kwon D (2003) Film-thickness considerations in microcantilever-beam test in measuring mechanical properties of metal thin film. Thin Solid Films 437:182–187

    Article  ADS  Google Scholar 

  32. McFarland AW, Colton JS (2005) Role of material microstructure in plate stiffness with relevance to microcantilever sensors. J Micromech Microeng 15:1060

    Article  Google Scholar 

  33. Grima JN, Szymon W, Luke M et al (2015) Tailoring graphene to achieve negative Poisson’s ratio properties. Adv Mater 27:1455–1459

    Article  Google Scholar 

  34. Hall LJ, Coluci VR, Galvao DS et al (2008) Sign change of Poisson’s ratio for carbon nanotube sheets. Science 320:504–507

    Article  ADS  Google Scholar 

  35. Wu Y, Yi N, Huang L et al (2015) Three-dimensionally bonded spongy graphene material with super compressive elasticity and near-zero Poisson’s ratio. Nat Commun 6:6141

    Article  Google Scholar 

  36. Kaminski M, Corigliano A (2015) Numerical solution of the Duffing equation with random coefficients. Meccanica 50:1841–1853

    Article  MathSciNet  MATH  Google Scholar 

  37. Li XF, Liu GL, Lee KY (2009) Magnetoelectroelastic field induced by a crack terminating at the interface of a bi-magnetoelectric material. Philos Mag 89:449–463

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This study was funded by the National Natural Science Foundation of China (No. 11672336) and the Open Foundation of State Key Laboratory of Structural Analysis for Industrial Equipment, Dalian University of Technology, PRC (No. GZ15204).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xian-Fang Li.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Appendix 1

Appendix 1

The following asymptotic expressions for the zeroth- and first-order Bessel functions of imaginary argument are used [27]

$$\begin{aligned} I_{0}\left( \beta \right)&=1+\frac{\beta ^{2}}{4}+\frac{\beta ^{4}}{64}+O(\beta ^{6}), \end{aligned}$$
(A1)
$$\begin{aligned} I_{1}\left( \beta \right)&=\frac{\beta }{2}+\frac{\beta ^{3}}{16} +\frac{\beta ^{5}}{384}+O(\beta ^{6}), \end{aligned}$$
(A2)
$$\begin{aligned} K_{0}\left( \beta \right)&=-\left( \gamma +\ln \frac{\beta }{2}\right) +\frac{\beta ^{2}}{4}\left( 1-\gamma -\ln \frac{\beta }{2}\right) +\frac{\beta ^{4}}{128}\left( 3-2\gamma -2\ln \frac{\beta }{2}\right) +O(\beta ^{6}), \end{aligned}$$
(A3)
$$\begin{aligned} K_{1}\left( \beta \right)&=\frac{1}{\beta }+\frac{\beta }{4}\left( -1+2\gamma +2\ln \frac{\beta }{2}\right) +\frac{\beta ^{3}}{64}\left( -5+4\gamma +4\ln \frac{\beta }{2}\right) +O(\beta ^{4}). \end{aligned}$$
(A4)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., Zou, J., Lee, K.Y. et al. Bending of circular nanoplates with consideration of surface effects. Meccanica 53, 985–999 (2018). https://doi.org/10.1007/s11012-017-0760-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-017-0760-8

Keywords

Navigation