Skip to main content
Log in

Stress and pressure fields around two wellbores in a poroelastic medium

  • Recent Advances on the Mechanics of Materials
  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

The problem of two circular wellbores of different size in a poroelastic medium is considered in the present work. The constitutive behaviour of the poroelastic medium is assumed to comply with the classical Biot model for isotropic porous materials infiltrated by compressible fluid. The wellbores are assumed infinitely long and the fluid flow is taken stationary, thus making it possible to perform a plane strain analysis. Owing to the geometrical layout of the system, bipolar cylindrical coordinates have been adopted. Three different sets of BCs on the pressure field and on the fluid flux have been considered, founding the corresponding forms of the pressure field. Based on Helmholtz representation, a displacement potential has been introduced, and the corresponding stress field in the poroelastic medium has been assessed. However, such a solution does not satisfy the BCs at the edges of the wells. Then, an auxiliary stress function, which allows accomplishing the BCs, is introduced, leading to the complete solution of the problem. The cases of two coaxial wellbores (eccentric annulus), a single hole bored in a poroelastic half plane and two intersecting holes have been considered also. The proposed approach allows evaluating the pore pressure and the stress and strain fields in the system varying the amplitude of the wells and the physical parameters of the porous material. In particular, the evaluation of the peak values of the stress components around the circular boreholes plays a key role in a variety of engineering contexts, with particular reference to the stability analysis of wellbores and tunnels and failure of vascular vessels in biological tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Verruijt A (1970) Theory of groundwater flow. Macmillan Education, Basingstoke

    Book  Google Scholar 

  2. Segall P (1989) Earthquakes triggered by fluid extraction. Geology 17:942–946

    Article  ADS  Google Scholar 

  3. Cowin SC (1999) Bone poroelasticity. J Biomech 32:217–238

    Article  Google Scholar 

  4. Carter JP, Booker JR (1982) Elastic consolidation around a deep circular tunnel. Int J Solids Struct 18(12):1059–1074

    Article  MATH  Google Scholar 

  5. Carter JP, Booker JR (1983) Creep and consolidation around circular openings in infinite media. Int J Solids Struct 19(8):663–675

    Article  MATH  Google Scholar 

  6. Risnes R, Bratli RK, Horsrud P (1982) Sand stresses around a wellbore. Soc Pet Eng 22(6):883–898

    Article  Google Scholar 

  7. Detournay E, Cheng AH-D (1988) Poroelastic response of a borehole in a non-hydrostatic stress field. Int J Rock Mech Min Sci Geomech Abst 25(3):171–182

    Article  Google Scholar 

  8. Biot MA (1956) The theory of propagation of elastic waves in a fluid saturated porous solid. I: the low frequency range. II: the high frequency range. J Acoust Soc Am 28(2):168–178, 179–191

  9. Biot MA (1962) Mechanics of deformation and acoustic propagation in porous media. J Appl Phys 33(4):1482–1498

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Vaziri HH, Byrne PM (1990) Analysis of stress, flow and stability around deep wells. Géotechnique 40(1):63–77

    Article  Google Scholar 

  11. Rajapakse RKND (1993) Stress analysis of borehole in poroelastic medium. ASCE J Eng Mech 119(6):1205–1227

    Article  Google Scholar 

  12. Segall P, Grasso J-R, Mossop A (1994) Poroelastic stressing and induced seismicity near the Lacq gas field, southwestern France. J Geophys Res 15:423–438

    Google Scholar 

  13. Liu QH, Sinha BK (2003) A 3D cylindrical PML/FDTD method for elastic waves in fluid-filled pressurized boreholes in triaxially stressed formations. Geophysics 68(5):1731–1743

    Article  ADS  Google Scholar 

  14. Bedayat H, Taleghani AD (2014) Interacting double poroelastic inclusions. Mech Mater 69:204–212

    Article  Google Scholar 

  15. Jeffery GB (1921) Plane stress and plane strain in bipolar co-ordinates. Philos Trans R Soc Lond Ser A 221:265–293

    Article  ADS  Google Scholar 

  16. Radi E, Morini L, Sevostianov I (2016) Conservation integrals for two circular holes kept at different temperatures in a thermoelastic solid. Int J Solids Struct 85–86:1–14

    Article  Google Scholar 

  17. Craster RV, Atkinson C (1992) Shear cracks in thermoelastic and poroelastic media. J Mech Phys Solids 40(4):887–924

    Article  ADS  MATH  Google Scholar 

  18. Lucht P (2015) Bipolar coordinates and the two-cylinder capacitor. Rimrock Digital Technology, Salt Lake City, Utah 84103 (last update: June 15, 2015)

  19. Bowen RM (1982) Compressible porous media models by use of the theory of mixtures. Int J Eng Sci 20(6):697–735

    Article  MATH  Google Scholar 

  20. Loret B, Harireche O (1991) Acceleration waves, flutter instabilities and stationary discontinuities in inelastic porous media. J Mech Phys Solids 39(5):560–569

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Loret B, Radi E (2001) On dynamic crack growth in poroelastic fluid-saturated media. J Mech Phys Solids 49(5):995–1020

    Article  ADS  MATH  Google Scholar 

  22. Moon P, Spencer DE (1961) Field theory handbook. Including coordinate systems, Differential equations and their solutions. Springer, Berlin

    MATH  Google Scholar 

  23. Ling C-B (1948) The stresses in a plate containing an overlapped circular hole. J Appl Phys 19:405–411

    Article  ADS  MathSciNet  Google Scholar 

  24. Dutt SB (1960) On the stresses due to an overlapped circular hole on the neutral axis of a deep beam under constant bending moment. Appl Sci Res 9:457–462

    Article  MATH  Google Scholar 

  25. Mukherjee S (1985) Thermal stresses in an isotropic infinite plate containing a hole consisting of two unequal circular arcs with boundaries at different temperatures. Proc Indian Natn Sci Acad A 4:655–665

    MATH  Google Scholar 

  26. Lanzoni L, Radi E, Tralli A (2007) On the seismic response of a flexible wall retaining a viscous poroelastic soil. Soil Dyn Earthq Eng 27:818–842

    Article  Google Scholar 

  27. Haque MI (2015) Mechanics of groundwater in porous media. CRC Press, Boca Raton

    Google Scholar 

  28. Lanzoni L, Tarantino AM (2015) Equilibrium configurations and stability of a damaged body under uniaxial tractions. ZAMP Z Angew Math Phys 66(1):171–190

    Article  MathSciNet  MATH  Google Scholar 

  29. Lanzoni L, Tarantino AM (2014) Damaged hyperelastic membranes. Int J Non-Linear Mech 60:9–22

    Article  Google Scholar 

  30. Tarantino AM (1997) Nonlinear fracture mechanics for an elastic Bell material, Quart. J Mech Appl Math 50(3):435–456

    Article  MathSciNet  MATH  Google Scholar 

  31. Ling C-B (1948) On the stresses in a plate containing two circular holes. J Appl Phys 19:77–82

    Article  ADS  MathSciNet  Google Scholar 

  32. Shioya S (1968) On the thermal stresses of a semi-infinite plate with a circular inclusion under uniform heat flow. Ing Arch 38:343–357

    MATH  Google Scholar 

Download references

Acknowlegdements

This study was funded by the Italian Ministry of Education, University and Research (MIUR), in the framework of the Project PRIN—COAN 5.50.16.01 (code 2015JW9NJT), which is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Lanzoni.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Appendix

Appendix

Some differential operators expressed in bipolar coordinates in two dimensions are listed below:

Laplacian operator of a scalar function f(α, β):

$$\nabla^{2} f(\alpha ,\beta ) = \frac{{\left( {{ \cosh}\alpha - \cos\beta } \right)^{2} }}{{a^{2} }}\left( {\frac{{\partial^{2} f}}{{\partial \alpha^{2} }} + \frac{{\partial^{2} f}}{{\partial \beta^{2} }}} \right);$$
(49)

gradient of a scalar function f(α, β):

$${\mathbf{\nabla }}f(\alpha ,\beta ) = \frac{{\left( {{ \cosh}\alpha - \cos\beta } \right)}}{a}\left( {\frac{\partial f}{\partial \alpha }{\hat{\mathbf{\alpha }}} + \frac{\partial f}{\partial \beta }{\hat{\mathbf{\beta }}}} \right);$$
(50)

divergence of a vector field f(α, β) = \(f_{\alpha } {\hat{\mathbf{\alpha }}} + f_{\beta } {\hat{\mathbf{\beta }}}\):

$$\nabla \cdot \varvec{f}(\alpha ,\beta ) = \frac{{\left( {{ \cosh}\alpha - \cos\beta } \right)}}{a}\left( {\frac{{\partial \varvec{f}}}{\partial \alpha } + \frac{{\partial \varvec{f}}}{\partial \beta } - \frac{{{ \sinh}\alpha \, \varvec{f}_{\alpha } + { \sin}\beta \, \varvec{f}_{\beta } }}{{\left( {{ \cosh}\alpha - \cos\beta } \right)}}} \right).$$
(51)

The following integrals reported in [31] have been used:

$$\int\limits_{ - \pi }^{\pi } {\frac{{\cos \,n\upbeta\;d\upbeta}}{{\cosh \,\upalpha - \cos\upbeta}}} = \frac{{2\uppi}}{{\sinh\left|\upalpha \right|}} e^{{ - \left| {n\upalpha} \right|}} ,\int_{ - \pi }^{\pi } {\frac{{\cos (m\upbeta)}}{{\left( {\cosh\upalpha - \cos\upbeta} \right)^{2} }}} \, {d\beta } = \frac{{2\uppi}}{{\sinh^{2}\upalpha}}e^{{ - m\left|\upalpha \right|}} (m + \coth \left|\upalpha \right|).$$
(52)

Identity (A4)1 allows to obtain the following Fourier series expansions [16]:

$$\frac{{\sinh\alpha \sin^{2} \beta }}{\cosh\alpha - \cos\beta } = e^{ - \left| \alpha \right|} \sinh\alpha + \sum\limits_{n = 1}^{\infty } {S_{n} (\alpha )} \;\cos n\beta ,\quad \frac{1 - \cosh\alpha \,\cos\beta }{\cosh\alpha - \cos\beta }\sin\beta = \sum\limits_{n = 1}^{\infty } {T_{n} (\alpha )} \;\sin n\beta ,$$
(53)

being

$$S_{1} (\upalpha) = e^{{ - 2\left|\upalpha \right|}} \sinh\upalpha,\quad S_{n} (\upalpha) = - 2e^{{ - n\left|\upalpha \right|}} \sinh\left|\upalpha \right|\sinh{\alpha ,}\quad (n \ge 2)$$
(54)
$$T_{1} (\upalpha) = e^{{ - \left|\upalpha \right|}} \left( {1 + e^{{ - \left|\upalpha \right|}} \sinh\left|\upalpha \right|} \right),\quad T_{n} (\upalpha) = - 2e^{{ - n\left|\upalpha \right|}} \sinh^{2}\upalpha\quad (n \ge 2).$$
(55)

It can be useful to expand the term ln(coshα − cosβ) in Fourier series as follows [32]:

$$\ln (\cosh\alpha - \cos\beta ) = \left| \alpha \right| \, - \, \ln \, 2 \, - 2 \, \sum\limits_{n = 1}^{\infty } {\frac{{e^{ - n\left| \alpha \right|} }}{n}} \, \cos (n \, \beta ).$$
(56)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lanzoni, L., Radi, E. & Nobili, A. Stress and pressure fields around two wellbores in a poroelastic medium. Meccanica 53, 639–657 (2018). https://doi.org/10.1007/s11012-017-0683-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-017-0683-4

Keywords

Navigation