Skip to main content
Log in

Exact solution for axial and transverse dynamic response of functionally graded nanobeam under moving constant load based on nonlocal elasticity theory

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

This paper aims to analyze the axial and transverse dynamic response of a functionally graded nanobeam under a moving constant load. The governing equations are obtained using the Hamilton principle and nonlocal Euler–Bernoulli beam theory. The mechanical properties vary in the thickness direction. The simply supported boundary condition is assumed and using the Laplace transform, the exact solution for the transverse and axial dynamic response is presented. Some examples were used to analyze nonlocal parameters such as power law index of FG materials, aspect ratio and the velocity of a moving constant load and also their influence on axial and transverse dynamic and maximum deflections. By obtaining a good agreement between the presented natural frequencies in this study and previous works, the results of this study are validated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Kiani K (2011) Small-scale effect on the vibration of thin nanoplates subjected to a moving nanoparticle via nonlocal continuum theory. J Sound Vib 330(20):4896–4914

    Article  ADS  Google Scholar 

  2. Ebrahimi F, Ghadiri M, Salari E, Hoseini SAH, Shaghaghi GR (2015) Application of the differential transformation method for nonlocal vibration analysis of functionally graded nanobeams. J Mech Sci Technol 29(3):1207–1215

    Article  Google Scholar 

  3. Rahmani O, Jandaghian AA (2015) Buckling analysis of functionally graded nanobeams based on a nonlocal third-order shear deformation theory. Appl Phys A 119(3):1019–1032. doi:10.1007/s00339-015-9061-z

    Article  ADS  Google Scholar 

  4. Kiani K (2014) Longitudinal and transverse instabilities of moving nanoscale beam-like structures made of functionally graded materials. Compos Struct 107:610–619. doi:10.1016/j.compstruct.2013.07.035

    Article  Google Scholar 

  5. Niknam H, Aghdam M (2015) A semi analytical approach for large amplitude free vibration and buckling of nonlocal FG beams resting on elastic foundation. Compos Struct 119:452–462

    Article  Google Scholar 

  6. Hosseini-Hashemi S, Nahas I, Fakher M, Nazemnezhad R (2014) Surface effects on free vibration of piezoelectric functionally graded nanobeams using nonlocal elasticity. Acta Mech 225(6):1555–1564. doi:10.1007/s00707-013-1014-z

    Article  MathSciNet  MATH  Google Scholar 

  7. Hosseini SAH, Rahmani O (2016) Free vibration of shallow and deep curved FG nanobeam via nonlocal Timoshenko curved beam model. Appl Phys A 122(3):1–11. doi:10.1007/s00339-016-9696-4

    Article  Google Scholar 

  8. Rahmani O, Asemani SS, Hosseini SAH (2015) Study the buckling of functionally graded nanobeams in elastic medium with surface effects based on a nonlocal theory. J Comput Theor Nanosci 12(10):3162–3170. doi:10.1166/jctn.2015.4095

    Article  Google Scholar 

  9. Rahmani O, Asemani SS, Hosseini SA (2016) Study the surface effect on the buckling of nanowires embedded in Winkler–Pasternak elastic medium based on a nonlocal theory. J Nanostruct 6(1):87–92

    Google Scholar 

  10. Veith M, Sow E, Werner U, Petersen C, Aktas OC (2008) The transformation of core/shell aluminium/alumina nanoparticles into nanowires. Eur J Inorg Chem 2008(33):5181–5184. doi:10.1002/ejic.200800890

    Article  Google Scholar 

  11. Craciunescu C, Wuttig M (2003) New ferromagnetic and functionally grade shape memory alloys. J Optoelectron Adv Mater 5(1):139–146

    Google Scholar 

  12. Fu Y, Du H, Zhang S (2003) Functionally graded TiN/TiNi shape memory alloy films. Mater Lett 57(20):2995–2999

    Article  Google Scholar 

  13. Fu Y, Du H, Huang W, Zhang S, Hu M (2004) TiNi-based thin films in MEMS applications: a review. Sens Actuators A 112(2):395–408

    Article  Google Scholar 

  14. Miyazaki S, Fu Y, Huang W (eds) (2009) Overview of sputter-deposited TiNi based thin films. In: Thin film shape memory alloys: fundamentals and device applications. Cambridge University Press, Cambridge

  15. Jia X, Yang J, Kitipornchai S (2010) Characterization of FGM micro-switches under electrostatic and Casimir forces. In: IOP conference series: materials science and engineering, vol 1. IOP Publishing, p 012178

  16. Jia X, Yang J, Kitipornchai S, Lim C (2011) Forced vibration of electrically actuated FGM micro-switches. Procedia Eng 14:280–287

    Article  Google Scholar 

  17. Shariat BS, Liu Y, Rio G (2012) Thermomechanical modelling of microstructurally graded shape memory alloys. J Alloys Compd 541:407–414

    Article  Google Scholar 

  18. Carbonari RC, Silva EC, Paulino GH (2009) Multi-actuated functionally graded piezoelectric micro-tools design: a multiphysics topology optimization approach. Int J Numer Methods Eng 77(3):301–336

    Article  MATH  Google Scholar 

  19. Batra R, Porfiri M, Spinello D (2008) Vibrations of narrow microbeams predeformed by an electric field. J Sound Vib 309(3):600–612

    Article  ADS  Google Scholar 

  20. Chen H, Zhang G, Richardson K, Luo J (2008) Synthesis of nanostructured nanoclay-zirconia multilayers: a feasibility study. J Nanomater 2008:47

    Google Scholar 

  21. Hasanyan D, Batra R, Harutyunyan S (2008) Pull-in instabilities in functionally graded microthermoelectromechanical systems. J Therm Stress 31(10):1006–1021

    Article  Google Scholar 

  22. Jia X, Yang J, Kitipornchai S, Lim CW (2012) Pull-in instability and free vibration of electrically actuated poly-SiGe graded micro-beams with a curved ground electrode. Appl Math Model 36(5):1875–1884

    Article  MathSciNet  MATH  Google Scholar 

  23. Mohammadi-Alasti B, Rezazadeh G, Borgheei A-M, Minaei S, Habibifar R (2011) On the mechanical behavior of a functionally graded micro-beam subjected to a thermal moment and nonlinear electrostatic pressure. Compos Struct 93(6):1516–1525

    Article  Google Scholar 

  24. Witvrouw A, Mehta A (2005) The use of functionally graded poly-SiGe layers for MEMS applications. In: Van der Biest O, Gasik M, Vleugels J (eds) Materials science forum, vol 492. Trans Tech Publications, Switzerland

  25. Eltaher M, Emam SA, Mahmoud F (2013) Static and stability analysis of nonlocal functionally graded nanobeams. Compos Struct 96:82–88

    Article  Google Scholar 

  26. Eltaher M, Khairy A, Sadoun A, Omar F-A (2014) Static and buckling analysis of functionally graded Timoshenko nanobeams. Appl Math Comput 229:283–295

    MathSciNet  Google Scholar 

  27. Nazemnezhad R, Hosseini-Hashemi S (2014) Nonlocal nonlinear free vibration of functionally graded nanobeams. Compos Struct 110:192–199. doi:10.1016/j.compstruct.2013.12.006

    Article  MATH  Google Scholar 

  28. Kiani K, Mehri B (2010) Assessment of nanotube structures under a moving nanoparticle using nonlocal beam theories. J Sound Vib 329(11):2241–2264

    Article  ADS  Google Scholar 

  29. Jandaghian AA, Rahmani O (2016) An analytical solution for free vibration of piezoelectric nanobeams based on a nonlocal elasticity theory. J Mech 32(02):143–151. doi:10.1017/jmech.2015.53

    Article  Google Scholar 

  30. Jandaghian A, Rahmani O (2016) Free vibration analysis of magneto-electro-thermo-elastic nanobeams resting on a Pasternak foundation. Smart Mater Struct 25(3):035023

    Article  ADS  Google Scholar 

  31. Hosseini S, Rahmani O (2016) Surface effects on buckling of double nanobeam system based on nonlocal Timoshenko model. Int J Struct Stab Dyn. doi:10.1142/S0219455415500777

    MathSciNet  Google Scholar 

  32. Hayati H, Hosseini SA, Rahmani O (2016) Coupled twist–bending static and dynamic behavior of a curved single-walled carbon nanotube based on nonlocal theory. Microsyst Technol 1–9. doi:10.1007/s00542-016-2933-0

  33. Jandaghian AA, Rahmani O (2015) On the buckling behavior of piezoelectric nanobeams: an exact solution. J Mech Sci Technol 29(8):3175–3182

    Article  Google Scholar 

  34. Rahmani O, Noroozi Moghaddam MH (2014) On the vibrational behavior of piezoelectric nano-beams. Adv Mater Res 829:790–794

    Article  Google Scholar 

  35. Rahmani O, Ghaffari S (2014) Frequency analysis of nano sandwich structure with nonlocal effect. Adv Mater Res 829:231–235

    Article  Google Scholar 

  36. Rahmani O (2014) On the flexural vibration of pre-stressed nanobeams based on a nonlocal theory. Acta Phys Pol A 125(2):532–534

    Article  Google Scholar 

  37. Rahmani O, Hosseini SAH, Noroozi Moghaddam MH, Fakhari Golpayegani I (2015) Torsional vibration of cracked nanobeam based on nonlocal stress theory with various boundary conditions: an analytical study. Int J Appl Mech 07(03):1550036. doi:10.1142/S1758825115500362

    Article  Google Scholar 

  38. Ebrahimi F, Salari E, Hosseini S (2015) In-plane thermal loading effects on vibrational characteristics of functionally graded nanobeams. Meccanica. doi:10.1007/s11012-015-0248-3

    MATH  Google Scholar 

  39. Rahmani O, Hosseini SAH, Hayati H (2016) Frequency analysis of curved nano-sandwich structure based on a nonlocal model. Mod Phys Lett B 30(10):1650136. doi:10.1142/S0217984916501360

    Article  ADS  MathSciNet  Google Scholar 

  40. Rahmani O, Pedram O (2014) Analysis and modeling the size effect on vibration of functionally graded nanobeams based on nonlocal Timoshenko beam theory. Int J Eng Sci 77:55–70

    Article  MathSciNet  Google Scholar 

  41. Uymaz B (2013) Forced vibration analysis of functionally graded beams using nonlocal elasticity. Compos Struct 105:227–239. doi:10.1016/j.compstruct.2013.05.006

    Article  Google Scholar 

  42. Eltaher M, Emam SA, Mahmoud F (2012) Free vibration analysis of functionally graded size-dependent nanobeams. Appl Math Comput 218(14):7406–7420

    MathSciNet  MATH  Google Scholar 

  43. Kiani K (2010) Longitudinal and transverse vibration of a single-walled carbon nanotube subjected to a moving nanoparticle accounting for both nonlocal and inertial effects. Phys E 42(9):2391–2401

    Article  MathSciNet  Google Scholar 

  44. Şimşek M (2010) Vibration analysis of a single-walled carbon nanotube under action of a moving harmonic load based on nonlocal elasticity theory. Phys E 43(1):182–191

    Article  Google Scholar 

  45. Şimşek M (2011) Nonlocal effects in the forced vibration of an elastically connected double-carbon nanotube system under a moving nanoparticle. Comput Mater Sci 50(7):2112–2123. doi:10.1016/j.commatsci.2011.02.017

    Article  Google Scholar 

  46. Pourseifi M, Rahmani O, Hoseini SAH (2015) Active vibration control of nanotube structures under a moving nanoparticle based on the nonlocal continuum theories. Meccanica 50(5):1351–1369

    Article  MathSciNet  MATH  Google Scholar 

  47. Pirmohammadi A, Pourseifi M, Rahmani O, Hoseini S (2014) Modeling and active vibration suppression of a single-walled carbon nanotube subjected to a moving harmonic load based on a nonlocal elasticity theory. Appl Phys A 117(3):1547–1555

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Rahmani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hosseini, S.A.H., Rahmani, O. Exact solution for axial and transverse dynamic response of functionally graded nanobeam under moving constant load based on nonlocal elasticity theory. Meccanica 52, 1441–1457 (2017). https://doi.org/10.1007/s11012-016-0491-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-016-0491-2

Keywords

Navigation