Skip to main content
Log in

Hard loss of stability of Ziegler’s column with nonlinear damping

  • Nonlinear Dynamics, Identification and Monitoring of Structures
  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

The paper is devoted to discuss the effects of nonlinear damping on the post-critical behavior of the Ziegler’s column. The classical Ziegler’s double-pendulum is considered in regime of finite displacements, in which, moreover, nonlinear damping of Van der Pol-type is introduced at the hinges. A second-order Multiple Scale analysis is carried out on the equations of motion expanded up to the fifth-order terms. The nature of the Hopf bifurcation, namely, supercritical or subcritical, as well as the occurrence of the ‘hard loss of stability’ phenomenon, are investigated. The effects of the nonlinear damping on the amplitude of the limit-cycle are finally studied for different linearly damped columns.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Beck M (1952) Die Knicklast des einseitig eingespannten, tangential gedrückten Stabes. Zeitschrift für angewandte Mathematik und Physik ZAMP 3(3):225–228 ISSN 0044-2275

    Article  ADS  MATH  Google Scholar 

  2. Ziegler H (1952) Die Stabilitätskriterien der Elastomechanik. Ing Arch 20(1):49–56

    Article  MathSciNet  MATH  Google Scholar 

  3. Bolotin VV (1963) Nonconservative problems of the theory of elastic stability. Macmillan, New York

    MATH  Google Scholar 

  4. Herrmann G, Jong IC (1965) On the destabilizing effect of damping in nonconservative elastic systems. J Appl Mech 32(3):592–597

    Article  MathSciNet  Google Scholar 

  5. Herrmann G (1967) Stability of equilibrium of elastic systems subjected to non-conservative forces. Appl Mech Rev 20:103–108

    Google Scholar 

  6. Leipholz H (1964) Über den Einfluss der Dämpfung bei nichtkonservativen Stabilitätsproblemen elastischer Stäbe. Ing Arch 33(5):308–321

    Article  MathSciNet  MATH  Google Scholar 

  7. Plaut RH, Infante EF (1970) The effect of external damping on the stability of Beck’s column. Int J Solids Struct 6(5):491–496

    Article  MATH  Google Scholar 

  8. Plaut RH (1971) A new destabilization phenomenon in nonconservative systems. ZAMM Zeitschrift für Angewandte Mathematik und Mechanik 51(4):319–321

    Article  ADS  Google Scholar 

  9. Walker JA (1973) A note on stabilizing damping configurations for linear nonconservative systems. Int J Solids Struct 9(12):1543–1545

    Article  MATH  Google Scholar 

  10. Banichuk NV, Bratus AS, Myshkis AD (1989) Stabilizing and destabilizing effects in non-conservative systems. J Appl Math Mech 53(2):158–164

    Article  MathSciNet  MATH  Google Scholar 

  11. Kounadis AN (1992) On the paradox of the destabilizing effect of damping in non-conservative systems. Int J Non-Linear Mech 27(4):597–609

    Article  MathSciNet  MATH  Google Scholar 

  12. Seyranian AP, Mailybaev AA (2003) Multiparameter stability theory with mechanical applications, vol 13. World Scientific, Singapore

    MATH  Google Scholar 

  13. Kirillov ON, Seyranian AP (2005a) The effect of small internal and external damping on the stability of distributed non-conservative systems. J Appl Math Mech 69(4):529–552

    Article  MathSciNet  Google Scholar 

  14. Kirillov ON, Verhulst F (2010) Paradoxes of dissipation-induced destabilization or who opened Whitney’s umbrella? ZAMM Zeitschrift für Angewandte Mathematik und Mechanik 90(6):462–488

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Kirillov ON (2005) A theory of the destabilization paradox in non-conservative systems. Acta Mech 174(3–4):145–166

    Article  MATH  Google Scholar 

  16. Kirillov ON, Seyranian AP (2005b) Stabilization and destabilization of a circulatory system by small velocity-dependent forces. J Sound Vib 283:781–800

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Kirillov ON (2013) Nonconservative stability problems of modern physics. Walter de Gruyter, Berlin

    Book  MATH  Google Scholar 

  18. Luongo A, D’Annibale F (2015a) A paradigmatic minimal system to explain the Ziegler paradox. Contin Mech Thermodyn 27(1–2):211–222

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Luongo A, D’Annibale F (2014) On the destabilizing effect of damping on discrete and continuous circulatory systems. J Sound Vib 333(24):6723–6741

    Article  ADS  Google Scholar 

  20. Koiter WT (1996) Unrealistic follower forces. J Sound Vib 194(4):636–638

    Article  ADS  Google Scholar 

  21. Sugiyama Y, Langthjem MA, Ryu B-J (1999) Realistic follower forces. J Sound Vib 225(4):779–782

    Article  ADS  Google Scholar 

  22. Elishakoff I (2005) Controversy associated with the so-called follower forces: critical overview. Appl Mech Rev 58(2):117–142

    Article  ADS  Google Scholar 

  23. Langthjem MA, Sugiyama Y (2000) Dynamic stability of columns subjected to follower loads: a survey. J Sound Vib 238(5):809–851

    Article  ADS  Google Scholar 

  24. O’Reilly OM, Malhotra NK, Namachchivaya NS (1996) Some aspects of destabilization in reversible dynamical systems with application to follower forces. Nonlinear Dyn 10(1):63–87

    Article  MathSciNet  Google Scholar 

  25. Hagedorn P (1970) On the destabilizing effect of non-linear damping in non-conservative systems with follower forces. Int J Non-Linear Mech 5(2):341–358

    Article  MathSciNet  MATH  Google Scholar 

  26. Thomsen JJ (1995) Chaotic dynamics of the partially follower-loaded elastic double pendulum. J Sound Vib 188(3):385–405

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. Crespo da Silva MRM (1978a) Harmonic non-linear response of Beck’s column to a lateral excitation. Int J Solids Struct 14(12):987–997

    Article  MathSciNet  MATH  Google Scholar 

  28. Crespo da Silva MRM (1978b) Flexural–flexural oscillations of Beck’s column subjected to a planar harmonic excitation. J Sound Vib 60(1):133–144

    Article  ADS  MATH  Google Scholar 

  29. Luongo A, Di Egidio A (2005) Bifurcation equations through multiple-scales analysis for a continuous model of a planar beam. Nonlinear Dyn 41(1–3):171–190

    Article  MathSciNet  MATH  Google Scholar 

  30. Luongo A, Di Egidio A (2006) Divergence, Hopf and double-zero bifurcations of a nonlinear planar beam. Comput Struct 84(24–25):1596–1605

    Article  Google Scholar 

  31. Di Egidio A, Luongo A, Paolone A (2007) Linear and non-linear interactions between static and dynamic bifurcations of damped planar beams. Int J Non-Linear Mech 42(1):88–98

    Article  MATH  Google Scholar 

  32. Luongo A, D’Annibale F (2013) Double zero bifurcation of non-linear viscoelastic beams under conservative and non-conservative loads. Int J Non-Linear Mech 55:128–139

    Article  Google Scholar 

  33. Nayfeh AH (2008) Perturbation methods. Wiley, New York

    Google Scholar 

  34. Nayfeh AH, Mook DT (2008) Nonlinear oscillations. Wiley, New York

    MATH  Google Scholar 

  35. Benedettini F, Rega G, Alaggio R (1995) Non-linear oscillations of a four-degree-of-freedom model of a suspended cable under multiple internal resonance conditions. J Sound Vib 182(5):775–798

    Article  ADS  Google Scholar 

  36. Luongo A, Paolone A (1999) On the reconstitution problem in the multiple time-scale method. Nonlinear Dyn 19(2):135–158

    Article  MathSciNet  MATH  Google Scholar 

  37. Bolotin VV (1964) The dynamic stability of elastic systems, volume 3 of Holden-Day series in mathematical physics. Holden-Day

  38. Luongo A, D’Annibale F (2015) Linear and nonlinear damping effects on the stability of the Ziegler column. In: Belhaq M (ed) Springer proceedings in physics, vol 168. Springer, New York, pp 335–352

  39. Luongo A, D’Annibale F (2016) Nonlinear hysteretic damping effects on the post-critical behavior of the visco-elastic Beck’s beam. Math Mech Solids. doi:10.1177/1081286516632381

  40. Bellomo N, Preziosi L (1994) Modelling mathematical methods and scientific computation, vol 1. CRC Press, Boca Raton

    MATH  Google Scholar 

  41. Seydel R (2009) Practical bifurcation and stability analysis, vol 5. Springer, Berlin

    MATH  Google Scholar 

  42. Novak M (1972) Galloping oscillations of prismatic structures. J Eng Mech Div 98(1):27–46

    Google Scholar 

  43. Piccardo G, Pagnini LC, Tubino F (2015) Some research perspectives in galloping phenomena: critical conditions and post-critical behavior. Contin Mech Thermodyn 27(1–2):261–285

    Article  ADS  MathSciNet  MATH  Google Scholar 

  44. Xu G, Steindl A, Troger H (1992) Nonlinear stability analysis of a bogie of a low-platform wagon. Veh Syst Dyn 20(sup1):653–665

    Article  Google Scholar 

  45. Zhang T, Wang W (2012) Hopf bifurcation and bistability of a nutrient–phytoplankton–zooplankton model. Appl Math Model 36(12):6225–6235

    Article  MathSciNet  Google Scholar 

  46. Luongo A, Zulli D (2012) Dynamic analysis of externally excited NES-controlled systems via a mixed Multiple Scale/Harmonic Balance algorithm. Nonlinear Dyn 70(3):2049–2061

    Article  MathSciNet  Google Scholar 

  47. Luongo A, Zulli D (2013) Mathematical models of beams and cables. Wiley, Hoboken

    Book  Google Scholar 

Download references

Acknowledgments

This work was granted by the Italian Ministry of University and Research (MIUR), under the PRIN10-11 program, Project N. 2010MBJK5B.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco D’Annibale.

Additional information

Dedicated to the memory of Francesco Benedettini.

Appendices

Appendix 1: Details on the Multiple Scale algorithm

This Appendix is devoted to furnish some detail on the perturbation algorithm presented in Sect. 3.

Once the generating solution of Eq. (11a), which is expressed by Eq. (12), is substituted in Eq. (11b), the following non-homogeneous problem is obtained:

$$\begin{aligned} \mathcal {L}\mathbf {q}_{1}&= \left( -2i\omega _{d}{\mathrm {d}}_{1}A\mathbf {M}\mathbf {u}_{d}-{\mathrm {d}}_{1}A\mathbf {C}\mathbf {u}_{d}-\delta \mu \mathbf {H}\mathbf {u}_{d}A\right) e^{i\omega _{d}t_{0}}\nonumber \\&\quad+\left[ 3\mu _{d}\mathbf {F}_{1}\left( \mathbf {u}_{d},\mathbf {u}_{d},\bar{\mathbf {u}}_{d}\right) +\omega _{d}^{2}\mathbf {F}_{2}\left( \mathbf {u}_{d},\mathbf {u}_{d},\bar{\mathbf {u}}_{d}\right) \right] A^{2}\bar{A}e^{i\omega _{d}t_{0}}\nonumber \\&\quad-\left[ 3\omega _{d}^{2}\mathbf {F}_{3}\left( \mathbf {u}_{d},\mathbf {u}_{d},\bar{\mathbf {u}}_{d}\right) -i\omega _{d}\mathbf {F}_{4}\left( \mathbf {u}_{d},\mathbf {u}_{d},\bar{\mathbf {u}}_{d}\right) \right] A^{2}\bar{A}e^{i\omega _{d}t_{0}}\nonumber \\&\quad+\left[ \mu _{d}\mathbf {F}_{1}\left( \mathbf {u}_{d},\mathbf {u}_{d},\mathbf {u}_{d}\right) -\omega _{d}^{2}\mathbf {F}_{2}\left( \mathbf {u}_{d},\mathbf {u}_{d},\mathbf {u}_{d}\right) \right] A^{3}e^{3i\omega _{d}t_{0}}\nonumber \\&\quad-\left[ \omega _{d}^{2}\mathbf {F}_{3}\left( \mathbf {u}_{d},\mathbf {u}_{d},\mathbf {u}_{d}\right) -i\omega _{d}\mathbf {F}_{4}\left( \mathbf {u}_{d},\mathbf {u}_{d},\mathbf {u}_{d}\right) \right] A^{3}e^{3i\omega _{d}t_{0}}\nonumber \\&\quad+{\mathrm {c.c.}} \end{aligned}$$
(18)

Solvability condition of this latter, furnishes an equation for the unknown \({\mathrm {d}}_{1}A\) of the type of Eq. (13), namely:

$$\begin{aligned} {\mathrm {d}}_{1}A&= -\delta \mu \,\frac{\mathbf {v}_{d}^{H}\mathbf {H}\mathbf {u}_{d}}{2i\Omega _{d}}A+\frac{3\mu _{d}}{2i\Omega _{d}}\mathbf {v}_{d}^{H}\mathbf {F}_{1}\left( \mathbf {u}_{d},\mathbf {u}_{d},\bar{\mathbf {u}}_{d}\right) A^{2}\bar{A}\nonumber \\&\quad+\frac{\omega _{d}^{2}}{2i\Omega _{d}}\left[ \mathbf {v}_{d}^{H}\mathbf {F}_{2}\left( \mathbf {u}_{d},\mathbf {u}_{d},\bar{\mathbf {u}}_{d}\right) -3\mathbf {v}_{d}^{H}\mathbf {F}_{3}\left( \mathbf {u}_{d},\mathbf {u}_{d},\bar{\mathbf {u}}_{d}\right) \right] A^{2}\bar{A}\nonumber \\&\quad+\frac{\omega _{d}}{2\Omega _{d}}\mathbf {v}_{d}^{H}\mathbf {F}_{4}\left( \mathbf {u}_{d},\mathbf {u}_{d},\bar{\mathbf {u}}_{d}\right) A^{2}\bar{A} \end{aligned}$$
(19)

where the apex H denotes the conjugate transpose, the normalization condition \(\mathbf {v}_{d}^{H}\mathbf {M}\mathbf {u}_{d}=1\) is accounted for, and \(\Omega _{d}:=\omega _{d}-i\left( \mathbf {v}_{d}^{H}\mathbf {C}\mathbf {u}_{d}\right) /2\) is introduced.

Once Eq. (19) is substituted in the \(\varepsilon\)-order problem (18), this latter reads:

$$\mathcal {L}\mathbf {q}_{1} =\left( \delta \mu \,A\,\mathbf {z}_{1}+A^{2}\bar{A}\,\mathbf {z}_{2}\right) e^{i\omega _{d}t_{0}}+A^{3}\mathbf {z}_{3}e^{3i\omega _{d}t_{0}}+{\mathrm {c.c.}}$$
(20)

where the following definitions hold:

$$\begin{aligned} \mathbf {z}_{1}&:= \frac{\mathbf {v}_{d}^{H}\mathbf {H}\mathbf {u}_{d}}{2i\Omega _{d}}\left( 2i\omega _{d}\mathbf {M}\mathbf {u}_{d}+\mathbf {C}\mathbf {u}_{d}\right) -\mathbf {H}\mathbf {u}_{d}\nonumber \\ \mathbf {z}_{2}&:= -\frac{3\mu _{d}}{2i\Omega _{d}}\mathbf {v}_{d}^{H}\mathbf {F}_{1}\left( \mathbf {u}_{d},\mathbf {u}_{d},\bar{\mathbf {u}}_{d}\right) \left( 2i\omega _{d}\mathbf {M}\mathbf {u}_{d}+\mathbf {C}\mathbf {u}_{d}\right) \nonumber \\&\quad-\frac{\omega _{d}^{2}}{2i\Omega _{d}}\mathbf {v}_{d}^{H}\mathbf {F}_{2}\left( \mathbf {u}_{d},\mathbf {u}_{d},\bar{\mathbf {u}}_{d}\right) \left( 2i\omega _{d}\mathbf {M}\mathbf {u}_{d}+\mathbf {C}\mathbf {u}_{d}\right) \nonumber \\&\quad+\frac{3\omega _{d}^{2}}{2i\Omega _{d}}\mathbf {v}_{d}^{H}\mathbf {F}_{3}\left( \mathbf {u}_{d},\mathbf {u}_{d},\bar{\mathbf {u}}_{d}\right) \left( 2i\omega _{d}\mathbf {M}\mathbf {u}_{d}+\mathbf {C}\mathbf {u}_{d}\right) \nonumber \\&\quad-\frac{\omega _{d}}{2\Omega _{d}}\mathbf {v}_{d}^{H}\mathbf {F}_{4}\left( \mathbf {u}_{d},\mathbf {u}_{d},\bar{\mathbf {u}}_{d}\right) \left( 2i\omega _{d}\mathbf {M}\mathbf {u}_{d}+\mathbf {C}\mathbf {u}_{d}\right) \nonumber \\&\quad+3\mu _{d}\mathbf {F}_{1}\left( \mathbf {u}_{d},\mathbf {u}_{d},\bar{\mathbf {u}}_{d}\right) +\omega _{d}^{2}\mathbf {F}_{2}\left( \mathbf {u}_{d},\mathbf {u}_{d},\bar{\mathbf {u}}_{d}\right) \nonumber \\&\quad-3\omega _{d}^{2}\mathbf {F}_{3}\left( \mathbf {u}_{d},\mathbf {u}_{d},\bar{\mathbf {u}}_{d}\right) +i\omega _{d}\mathbf {F}_{4}\left( \mathbf {u}_{d},\mathbf {u}_{d},\bar{\mathbf {u}}_{d}\right) \nonumber \\ \mathbf {z}_{3}&:= \mu _{d}\mathbf {F}_{1}\left( \mathbf {u}_{d},\mathbf {u}_{d},\mathbf {u}_{d}\right) -\omega _{d}^{2}\mathbf {F}_{2}\left( \mathbf {u}_{d},\mathbf {u}_{d},\mathbf {u}_{d}\right) \nonumber \\&\quad-\omega _{d}^{2}\mathbf {F}_{3}\left( \mathbf {u}_{d},\mathbf {u}_{d},\mathbf {u}_{d}\right) +i\omega _{d}\mathbf {F}_{4}\left( \mathbf {u}_{d},\mathbf {u}_{d},\mathbf {u}_{d}\right) \end{aligned}$$
(21)

The solution of the equation (20) is in the form of Eq. (14), where \(\mathbf {w}_{1}\), \(\mathbf {w}_{2}\) and \(\mathbf {w}_{3}\) are obtained by resolving the following algebraic problems:

$$\begin{aligned} \left[ -\omega _{d}^{2}\mathbf {M}+i\omega _{d}\mathbf {C}+\left( \mathbf {K}+\mu _{d}\mathbf {H}\right) \right] \mathbf {w}_{1}&= \mathbf {z}_{1}\nonumber \\ \left[ -\omega _{d}^{2}\mathbf {M}+i\omega _{d}\mathbf {C}+\left( \mathbf {K}+\mu _{d}\mathbf {H}\right) \right] \mathbf {w}_{2}&= \mathbf {z}_{2}\nonumber \\ \left[ -9\omega _{d}^{2}\mathbf {M}+3i\omega _{d}\mathbf {C}+\left( \mathbf {K}+\mu _{d}\mathbf {H}\right) \right] \mathbf {w}_{3}&= \mathbf {z}_{3} \end{aligned}$$
(22)

In particular \(\mathbf {w}_{1}\) and \(\mathbf {w}_{2}\) are solutions of singular problems, normalized according to \(\mathbf {v}_{d}^{H}\mathbf {w}_{j}=0,\;j=1,2\), while \(\mathbf {w}_{3}\) is the solution of a non-singular problem.

Finally, Eq. (15) is obtained by straightforwardly extending the above discussed procedure to the \(\varepsilon ^{2}\)-order problem: Eqs. (12) and (14) are substituted in Eq. (11c) and solvability condition of this latter is enforced. However, this step of the algorithm entails cumbersome final expressions, which do not provide any further qualitative information on the perturbation solution; therefore, the relevant equations, which can be easily obtained through a software for symbolic calculation, are not reported here.

Appendix 2: Derivation of the equations of motion of the nonlinearly damped visco-elastic Beck’s beam

The relevant steps for deriving the equations of motion of the nonlinearly damped visco-elastic Beck’s beam are reported, in order to render the present paper self-contained. For further details the reader is referred to [39].

The beam is modeled as one-dimensional, internally constrained, polar continuum (see, e.g., [47]), embedded in the plane spanned by the unit vectors \(\bar{\mathbf {a}}_{x}\), \(\bar{\mathbf {a}}_{y}\). The rotation angle of the point P around the \(\bar{\mathbf {a}}_{z}\)-axis, namely \(\theta \left( s,t\right)\), maps the reference basis \(\left( \bar{\mathbf {a}}_{x},\bar{\mathbf {a}}_{y},\bar{\mathbf {a}}_{z}\right)\), attached to P, into the current one \(\left( \mathbf {a}_{x},\mathbf {a}_{y},\bar{\mathbf {a}}_{z}\right)\); \(\theta\) is taken as configuration variable. Moreover, the unshearability constraint, entails that \(\mathbf {a}_{x}\) is tangent to the beam axis.

The curvature of the beam is introduced as a measure of strain; it reads:

$$\chi \left( s,t\right) =\theta '\left( s,t\right)$$
(23)

The inextensibility condition entails:

$$\begin{aligned} u'\left( s,t\right)&= \cos \theta \left( s,t\right) -1\nonumber \\ v'\left( s,t\right)&= \sin \theta \left( s,t\right) \end{aligned}$$
(24)

where uv are scalar function which describe the longitudinal and transverse displacement of the beam axis, respectively. The geometrical boundary conditions at the clamp are:

$$\begin{aligned} u\left( 0,t\right)&= 0\nonumber \\ v\left( 0,t\right)&= 0\nonumber \\ \theta \left( 0,t\right)&= 0 \end{aligned}$$
(25)

The fields uv are then rewritten as functions of \(\theta\): indeed, by integrating with respect to s Eq. (24), and by taking into account for Eq. (25), the following conditions hold:

$$\begin{aligned} u\left( s,t\right)&= \int _{0}^{s}\left[ \cos \theta \left( \hat{s},t\right) -1\right] \,{\mathrm {d}}\hat{s}\nonumber \\ v\left( s,t\right)&= \int _{0}^{s}\sin \theta \left( \hat{s},t\right) \,{\mathrm {d}}\hat{s} \end{aligned}$$
(26)

being \(\hat{s}\) a dummy variable. The balance equations in the reference basis \(\left( \bar{\mathbf {a}}_{x},\bar{\mathbf {a}}_{y},\bar{\mathbf {a}}_{z}\right)\) read:

$$\begin{aligned}&R'\left( s,t\right) +p_{x}\left( s,t\right) =0\nonumber \\&S'\left( s,t\right) +p_{y}\left( s,t\right) =0\nonumber \\&M'\left( s,t\right) +S\left( s,t\right) \cos \theta \left( s,t\right) -R\left( s,t\right) \sin \theta \left( s,t\right) =0 \end{aligned}$$
(27)

where RS are the extrinsic component of the force-stress vector, M is the bending moment and \(p_{x},p_{y}\) are the external distributed loads. The mechanical boundary conditions at the free end are:

$$\begin{aligned} R\left( \ell ,t\right)&= -F\cos \theta \left( \ell ,t\right) \nonumber \\ S\left( \ell ,t\right)&= -F\sin \theta \left( \ell ,t\right) \nonumber \\ M\left( \ell ,t\right)&= 0 \end{aligned}$$
(28)

Then, by integrating Eqs. (27a, b) with respect to s, and by taking into account for Eqs. (28a, b), the extrinsic components are rewritten as:

$$\begin{aligned} R\left( s,t\right)&= -F\cos \theta \left( \ell ,t\right) +\int _{s}^{\ell }p_{x}\left( \hat{s},t\right) \,{\mathrm {d}}\hat{s}\nonumber \\ S\left( s,t\right)&= -F\sin \theta \left( \ell ,t\right) +\int _{s}^{\ell }p_{y}\left( \hat{s},t\right) \,{\mathrm {d}}\hat{s} \end{aligned}$$
(29)

When Eqs. (29) are substituted in Eq. (27c), this latter becomes:

$$\begin{aligned}&M'\left( s,t\right) +\cos \theta \left( s,t\right) \int _{s}^{\ell }p_{y}\left( \hat{s},t\right) \,{\mathrm {d}}\hat{s}-\sin \theta \left( s,t\right) \int _{s}^{\ell }p_{x}\left( \hat{s},t\right) \,{\mathrm {d}}\hat{s}\nonumber \\&\quad +F\left[ \cos \theta \left( \ell ,t\right) \sin \theta \left( s,t\right) -\sin \theta \left( \ell ,t\right) \cos \theta \left( s,t\right) \right] =0 \end{aligned}$$
(30)

Once the inertia forces and the external damping are introduced, i.e. \(p_{x}=-m\ddot{u},\,p_{y}=-m\ddot{v}-b\dot{v}\), and use of Eqs. (26) and (4) is made, Eq. (30) is transformed into:

$$\begin{aligned}&EI\theta ''+\eta _{1}I\dot{\theta }''+\eta _{3}I\left( \theta '^{2}\dot{\theta }'\right) '-b\cos \theta \intop _{s}^{\ell }\intop _{0}^{\check{s}}\dot{\theta }\cos \theta d\hat{s}d\check{s}\nonumber \\&\quad +m\cos \theta \intop _{s}^{\ell }\intop _{0}^{\check{s}}\left( \dot{\theta }^{2}\sin \theta -\ddot{\theta }\cos \theta \right) d\hat{s}d\check{s}\nonumber \\&\quad -m\sin \theta \intop _{s}^{\ell }\intop _{0}^{\check{s}}\left( \dot{\theta }^{2}\cos \theta +\ddot{\theta }\sin \theta \right) d\hat{s}d\check{s}\nonumber \\&\quad +F\left[ \cos \theta \left( \ell ,t\right) \sin \theta \left( s,t\right) -\sin \theta \left( \ell ,t\right) \cos \theta \left( s,t\right) \right] =0 \end{aligned}$$
(31)

being \(\check{s}\) a dummy variable. Equation (31) must be sided by the two remaining (i.e. not used) boundary conditions, namely Eqs. (25c) and (28c), which read:

$$\begin{aligned}&\theta \left( 0,t\right) =0\nonumber \\&EI\theta '\left( \ell ,t\right) +\eta _{1}I\dot{\theta }'\left( \ell ,t\right) +\eta _{3}I\left[ \theta '^{2}\left( \ell ,t\right) \dot{\theta }'\left( \ell ,t\right) \right] =0 \end{aligned}$$
(32)

Finally, by introducing the quantities (6) in Eqs. (31) and (32), Eqs. (5) are obtained (tilde removed).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luongo, A., D’Annibale, F. & Ferretti, M. Hard loss of stability of Ziegler’s column with nonlinear damping. Meccanica 51, 2647–2663 (2016). https://doi.org/10.1007/s11012-016-0471-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-016-0471-6

Keywords

Navigation