Skip to main content
Log in

Damped vibration of a nonlocal nanobeam resting on viscoelastic foundation: fractional derivative model with two retardation times and fractional parameters

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

In this paper, we investigate the free damped vibration of a nanobeam resting on viscoelastic foundation. Nanobeam and viscoelastic foundation are modeled using nonlocal elasticity and fractional order viscoelasticity theories. Motion equation is derived using D’Alambert’s principle and involves two retardation times and fractional order derivative parameters regarding to a nanobeam and viscoelastic foundation. The analytical solution is obtained using the Laplace transform method and it is given as a sum of two terms. First term denoting the drift of the system’s equilibrium position is given as an improper integral taken along two sides of the cut of complex plane. Two complex conjugate roots located in the left half-plane of the complex plane determine the second term describing the damped vibration around equilibrium position. Results for complex roots of characteristic equation obtained for a single nanobeam without viscoelastic foundation, where imaginary parts represent damped frequencies, are validated with the results found in the literature for natural frequencies of  a single-walled carbon nanotube obtained from molecular dynamics simulations. In order to examine the effects of nonlocal parameter, fractional order parameters and retardation times on the behavior of characteristic equation roots in the complex plane and the time-response of nanobeam, several numerical examples are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Paulson JA, Mesbah A, Zhu X, Molaro MC, Braatz RD (2015) Control of self-assembly in micro-and nano-scale systems. J Process Control 27:38–49

    Article  Google Scholar 

  2. Bae H, Chu H, Edalat F, Cha JM, Sant S, Kashyap A, Ahari AF, Kwon CH, Nichol JW, Manoucheri S, Zamanian B, Wang Y, Khademhosseini A (2014) Development of functional biomaterials with micro-and nanoscale technologies for tissue engineering and drug delivery applications. J Tissue Eng Regen Med 8(1):1–14

    Article  Google Scholar 

  3. Xia Y, Yang P, Sun Y, Wu Y, Mayers B, Gates B, Yin Y, Kim F, Yan H (2003) One-dimensional nanostructures: synthesis, characterization, and applications. Adv Mater 15(5):353–389

    Article  Google Scholar 

  4. Karatrantos A, Composto RJ, Winey KI, Clarke N (2011) Structure and conformations of polymer/SWCNT nanocomposites. Macromolecules 44(24):9830–9838

    Article  ADS  Google Scholar 

  5. Bhushan B (2007) Nanotribology and nanomechanics of MEMS/NEMS and BioMEMS/BioNEMS materials and devices. Microelectron Eng 84(3):387–412

    Article  Google Scholar 

  6. Li M, Pernice WHP, Tang HX (2010) Ultrahigh-frequency nano-optomechanical resonators in slot waveguide ring cavities. Appl Phys Lett 97(18):183110

    Article  ADS  Google Scholar 

  7. Gibson RF, Ayorinde EO, Wen YF (2007) Vibrations of carbon nanotubes and their composites: a review. Compos Sci Technol 67(1):1–28

    Article  Google Scholar 

  8. Karlicic D, Murmu T, Adhikari S, McCarthy M (2015) Non-local structural mechanics. Wiley, New York

    Book  Google Scholar 

  9. Eringen AC (ed) (2002) Nonlocal continuum field theories. Springer, New York

    MATH  Google Scholar 

  10. Eringen AC, Edelen DGB (1972) On nonlocal elasticity. Int J Eng Sci 10(3):233–248

    Article  MathSciNet  MATH  Google Scholar 

  11. Eringen AC (1983) On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. J Appl Phys 54(9):4703–4710

    Article  ADS  Google Scholar 

  12. Reddy JN (2007) Nonlocal theories for buckling bending and vibration of beams. Int J Eng Sci 45:288–307

    Article  MATH  Google Scholar 

  13. Wang Q, Liew KM (2007) Application of nonlocal continuum mechanics to static analysis of micro- and nano-structures. Phys Lett A 363:236–242

    Article  ADS  Google Scholar 

  14. Aydogdu M (2009) A general nonlocal beam theory: its application to nanobeam bending, buckling and vibration. Phys E 41:1651–1655

    Article  Google Scholar 

  15. Murmu T, Adhikari S (2010) Nonlocal effects in the longitudinal vibration of double-nanorod systems. Phys E 43:415–422

    Article  Google Scholar 

  16. Huu-Tai T (2012) A nonlocal beam theory for bending, buckling, and vibration of nanobeams. Int J Eng Sci 52:56–64

    Article  MathSciNet  Google Scholar 

  17. Khademolhosseini F, Phani A, Nojeh A, Rajapakse N (2012) Nonlocal continuum modeling and molecular dynamics simulation of torsional vibration of carbon nanotubes. IEEE Trans Nanotechnol 11(1):34–43

    Article  ADS  Google Scholar 

  18. Huang LY, Han Q, Liang YJ (2012) Calibration of nonlocal scale effect parameter for bending single-layered graphene sheet under molecular dynamics. NANO 7(05):1250033

    Article  Google Scholar 

  19. Lei Y, Murmu T, Adhikari S, Friswell MI (2013) Dynamic characteristics of damped viscoelastic nonlocal Euler–Bernoulli beams. Eur J Mech A/Solids 42:125–136

    Article  MathSciNet  Google Scholar 

  20. Lei Y, Adhikari S, Murmu T, Friswell MI (2014) Asymptotic frequencies of various damped nonlocal beams and plates. Mech Res Commun 62:94–101

    Article  Google Scholar 

  21. Li X, McKenna GB (2012) Considering viscoelastic micromechanics for the reinforcement of graphene polymer nanocomposites. ACS Macro Lett 1(3):388–391

    Article  Google Scholar 

  22. Spitalsky Z, Tasis D, Papagelis K, Galiotis C (2010) Carbon nanotube–polymer composites: chemistry, processing, mechanical and electrical properties. Prog Polym Sci 35(3):357–401

    Article  Google Scholar 

  23. Karličić D, Cajić M, Murmu T, Adhikari S (2015) Nonlocal longitudinal vibration of viscoelastic coupled double-nanorod systems. Eur J Mech A/Solids 49:183–196

    Article  MathSciNet  MATH  Google Scholar 

  24. Karličić D, Murmu T, Cajić M, Kozić P, Adhikari S (2014) Dynamics of multiple viscoelastic carbon nanotube based nanocomposites with axial magnetic field. J Appl Phys 115(23):234303

    Article  ADS  MATH  Google Scholar 

  25. Karličić D, Kozić P, Adhikari S, Cajić M, Murmu T, Lazarević M (2015) Nonlocal mass-nanosensor model based on the damped vibration of single-layer graphene sheet influenced by in-plane magnetic field. Int J Mech Sci 96:132–142

    MATH  Google Scholar 

  26. Bagley RL, Torvik J (1983) Fractional calculus-a different approach to the analysis of viscoelastically damped structures. AIAA J 21(5):741–748

    Article  ADS  MATH  Google Scholar 

  27. Bagley RL, Torvik PJ (1986) On the fractional calculus model of viscoelastic behavior. J Rheol (1978-present) 30(1):133–155

    Article  ADS  MATH  Google Scholar 

  28. Koeller RC (1984) Applications of fractional calculus to the theory of viscoelasticity. J Appl Mech 51(2):299–307

    Article  MathSciNet  MATH  Google Scholar 

  29. wJ Welch S, Rorrer RA, Duren RG Jr (1999) Application of time-based fractional calculus methods to viscoelastic creep and stress relaxation of materials. Mech Time-Depend Mater 3(3):279–303

    Article  ADS  Google Scholar 

  30. Imboden M, Mohanty P (2014) Dissipation in nanoelectromechanical systems. Phys Rep 534(3):89–146

    Article  ADS  MathSciNet  Google Scholar 

  31. Lu H, Huang G, Wang B, Mamedov A, Gupta S (2006) Characterization of the linear viscoelastic behavior of single-wall carbon nanotube/polyelectrolyte multilayer nanocomposite film using nanoindentation. Thin Solid Films 500(1):197–202

    ADS  Google Scholar 

  32. Díez-Pascual AM, Gómez-Fatou MA, Ania F, Flores A (2015) Nanoindentation in polymer nanocomposites. Prog Mater Sci 67:1–94

    Article  Google Scholar 

  33. Wright WJ, Nix WD (2009) Storage and loss stiffnesses and moduli as determined by dynamic nanoindentation. J Mater Res 24(03):863–871

    Article  ADS  Google Scholar 

  34. Pathak S, Cambaz ZG, Kalidindi SR, Swadener JG, Gogotsi Y (2009) Viscoelasticity and high buckling stress of dense carbon nanotube brushes. Carbon 47(8):1969–1976

    Article  Google Scholar 

  35. Rossikhin YA, Shitikova MV (2001) Analysis of rheological equations involving more than one fractional parameters by the use of the simplest mechanical systems based on these equations. Mech Time-Depend Mater 5(2):131–175

    Article  ADS  Google Scholar 

  36. Bagley RL, Torvik PJ (1983) A theoretical basis for the application of fractional calculus to viscoelasticity. J Rheol (1978-present) 27(3):201–210

    Article  ADS  MATH  Google Scholar 

  37. Wharmby AW, Bagley RL (2013) Generalization of a theoretical basis for the application of fractional calculus to viscoelasticity. J Rheol (1978-present) 57(5):1429–1440

    Article  ADS  Google Scholar 

  38. Shermergor TD (1966) On the use of fractional differentiation operators for the description of elastic-after effect properties of materials. J Appl Mech Tech Phys 7(6):85–87

    Article  ADS  Google Scholar 

  39. Rossikhin YA (2010) Reflections on two parallel ways in the progress of fractional calculus in mechanics of solids. Appl Mech Rev 63(1):010701

    Article  ADS  Google Scholar 

  40. Bagley RL, Torvik PJ (1985) Fractional calculus in the transient analysis of viscoelastically damped structures. AIAA journal 23(6):918–925

    Article  ADS  MATH  Google Scholar 

  41. Hedrih KS (2006) The transversal creeping vibrations of a fractional derivative order constitutive relation of nonhomogeneous beam. Math Problems Eng 2006(2006):1–18

  42. Di Paola M, Heuer R, Pirrotta A (2013) Fractional visco-elastic Euler-Bernoulli beam. Int J Solids Struct 50(22):3505–3510

    Article  Google Scholar 

  43. Pirrotta A, Cutrona S, Di Lorenzo S (2015) Fractional visco-elastic Timoshenko beam from elastic Euler–Bernoulli beam. Acta Mech 226(1):179–189

    Article  MathSciNet  MATH  Google Scholar 

  44. Rossikhin YA, Shitikova MV (1997) Applications of fractional calculus to dynamic problems of linear and nonlinear hereditary mechanics of solids. Appl Mech Rev 50(1):15–67

    Article  ADS  MathSciNet  Google Scholar 

  45. Rossikhin YA, Shitikova MV (2010) Application of fractional calculus for dynamic problems of solid mechanics: novel trends and recent results. Appl Mech Rev 63(1):010801

    Article  ADS  Google Scholar 

  46. Rossikhin YA, Shitikova MV (2001) A new method for solving dynamic problems of fractional derivative viscoelasticity. Int J Eng Sci 39(2):149–176

    Article  Google Scholar 

  47. Li C, Chen A, Ye J (2011) Numerical approaches to fractional calculus and fractional ordinary differential equation. J Comput Phys 230(9):3352–3368

    Article  ADS  MathSciNet  MATH  Google Scholar 

  48. Rossikhin Yu A (1970). Dynamic problems of linear viscoelasticity connected with the investigation of retardation and relaxation spectra. Ph.D. Dissertation, Voronezh Polytechnic Institute, Voronezh (in Russian). Ph.D., Voronezh Polytechnic Inst, Voronezh

  49. Zelenev VM, Meshkov SI, Rossikhin YA (1970) Damped vibrations of hereditary-elastic systems with weakly singular kernels. J Appl Mech Tech Phys 11(2):290–293

    Article  ADS  Google Scholar 

  50. Meshkov SI, Pachevskaya GN, Postnikov VS, Rossikhin YA (1971) Integral representations of ε γ-functions and their application to problems in linear viscoelasticity. Int J Eng Sci 9(4):387–398

    Article  MathSciNet  MATH  Google Scholar 

  51. Rossikhin YA, Shitikova MV (2008) Free damped vibrations of a viscoelastic oscillator based on Rabotnov’s model. Mech Time-Depend Mater 12(2):129–149

    Article  ADS  Google Scholar 

  52. Rossikhin YA, Shitikova MV, Shcheglova TA (2010) Analysis of free vibrations of a viscoelastic oscillator via the models involving several fractional parameters and relaxation/retardation times. Comput Math Appl 59(5):1727–1744

    Article  MathSciNet  MATH  Google Scholar 

  53. Atanackovic TM, Bouras Y, Zorica D (2014) Nano-and viscoelastic Beck’s column on elastic foundation. Acta Mech 226(7):2335–2345

    Article  MathSciNet  MATH  Google Scholar 

  54. Atanackovic TM, Janev M, Konjik S, Pilipovic S, Zorica D (2015) Vibrations of an elastic rod on a viscoelastic foundation of complex fractional Kelvin–Voigt type. Meccanica 50(7):1679–1692

  55. Ansari R, Oskouie MF, Sadeghi F, Bazdid-Vahdati M (2015) Free vibration of fractional viscoelastic Timoshenko nanobeams using the nonlocal elasticity theory. Phys E 74:318–327

    Article  Google Scholar 

  56. Ansari R, Oskouie MF, Gholami R (2016) Size-dependent geometrically nonlinear free vibration analysis of fractional viscoelastic nanobeams based on the nonlocal elasticity theory. Phys E 75:266–271

    Article  Google Scholar 

  57. Lazopoulos KA (2006) Non-local continuum mechanics and fractional calculus. Mech Res Commun 33(6):753–757

    Article  MathSciNet  MATH  Google Scholar 

  58. Challamel N, Zorica D, Atanacković TM, Spasić DT (2013) On the fractional generalization of Eringenʼs nonlocal elasticity for wave propagation. Comptes Rendus Mécanique 341(3):298–303

    Article  ADS  Google Scholar 

  59. Atanackovic TM, Janev M, Oparnica L, Pilipovic S, Zorica D (2015). Space–time fractional Zener wave equation. In: Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences. The Royal Society, vol 471(2174)

  60. Cajić M, Karličić D, Lazarević M (2015) Nonlocal vibration of a fractional order viscoelastic nanobeam with attached nanoparticle. Theor Appl Mech 42(3):167–190

    Article  Google Scholar 

  61. Ansari R, Shahabodini A, Rouhi H (2015) A nonlocal plate model incorporating interatomic potentials for vibrations of graphene with arbitrary edge conditions. Curr Appl Phys 15(9):1062–1069

    Article  ADS  Google Scholar 

  62. Ansari R, Pourashraf T, Gholami R (2015) An exact solution for the nonlinear forced vibration of functionally graded nanobeams in thermal environment based on surface elasticity theory. Thin-Walled Struct 93:169–176

    Article  Google Scholar 

  63. Ansari R, Hasrati E, Gholami R, Sadeghi F (2015) Nonlinear analysis of forced vibration of nonlocal third-order shear deformable beam model of magneto–electro–thermo elastic nanobeams. Compos Part B Eng 83:226–241

    Article  Google Scholar 

  64. Ansari R, Mohammadi V, Shojaei MF, Gholami R, Rouhi H (2014) Nonlinear vibration analysis of Timoshenko nanobeams based on surface stress elasticity theory. Eur J Mech A/Solids 45:143–152

    Article  MathSciNet  Google Scholar 

  65. Ansari R, Gholami R, Rouhi H (2015) Size-dependent nonlinear forced vibration analysis of magneto-electro-thermo-elastic Timoshenko nanobeams based upon the nonlocal elasticity theory. Compos Struct 126:216–226

    Article  Google Scholar 

  66. Kazemi-Lari MA, Fazelzadeh SA, Ghavanloo E (2012) Non-conservative instability of cantilever carbon nanotubes resting on viscoelastic foundation. Phys E Low-Dimens Syst Nanostruct 44(7):1623–1630

    Article  ADS  Google Scholar 

  67. Ghorbanpour-Arani AH, Rastgoo A, Sharafi MM, Kolahchi R, Arani AG (2016) Nonlocal viscoelasticity based vibration of double viscoelastic piezoelectric nanobeam systems. Meccanica 51(1):25–40

    Article  MathSciNet  MATH  Google Scholar 

  68. Barretta R, Feo L, Luciano R (2015) Torsion of functionally graded nonlocal viscoelastic circular nanobeams. Compos Part B Eng 72:217–222

    Article  Google Scholar 

  69. Atanackovic TM, Pilipovic S, Stankovic B, Zorica D (2014) Fractional calculus with applications in mechanics: vibrations and diffusion processes. Wiley, New York

    Book  MATH  Google Scholar 

  70. Podlubny I (1998) Fractional differential equations: an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, vol 198. Academic Press, Cambridge

    MATH  Google Scholar 

  71. Petráš I (2011) Fractional derivatives, fractional integrals, and fractional differential equations in Matlab. Eng Educ Res Using MATLAB InTech kap 10:239–264

    Google Scholar 

  72. Heymans N, Podlubny I (2006) Physical interpretation of initial conditions for fractional differential equations with Riemann–Liouville fractional derivatives. Rheol Acta 45(5):765–771

    Article  Google Scholar 

  73. Cajić M, Lazarević MP (2014) Fractional order spring/spring-pot/actuator element in a multibody system: application of an expansion formula. Mech Res Commun 62:44–56

    Article  Google Scholar 

  74. Pritz T (1996) Analysis of four-parameter fractional derivative model of real solid materials. J Sound Vib 195(1):103–115

    Article  ADS  MATH  Google Scholar 

  75. Atanackovic TM, Pilipovic S, Stankovic B, Zorica D (2014) Fractional calculus with applications in mechanics: wave propagation, impact and variational principles. Wiley, New York

    Book  MATH  Google Scholar 

  76. Ansari R, Sahmani S (2012) Small scale effect on vibrational response of single-walled carbon nanotubes with different boundary conditions based on nonlocal beam models. Commun Nonlinear Sci Numer Simul 17(4):1965–1979

    Article  ADS  MathSciNet  Google Scholar 

  77. Mitrinovic D, Keckic JD (1984) The Cauchy method of residues: theory and applications, vol 259. Springer, Berlin

    Book  MATH  Google Scholar 

  78. Phadikar JK, Pradhan SC (2010) Variational formulation and finite element analysis for nonlocal elastic nanobeams and nanoplates. Comput Mater Sci 49(3):492–499

    Article  Google Scholar 

  79. Reddy JN, Pang SD (2008) Nonlocal continuum theories of beams for the analysis of carbon nanotubes. J Appl Phys 103(2):023511

    Article  ADS  Google Scholar 

  80. Kempfle S, Schäfer I, Beyer H (2002) Fractional calculus via functional calculus: theory and applications. Nonlinear Dyn 29(1–4):99–127

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This research was sponsored by the research Grants of the Serbian Ministry of Education, Science and Technological Development under the Numbers OI 174001, OI 174011 and TR 35006.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Milan Cajić.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cajić, M., Karličić, D. & Lazarević, M. Damped vibration of a nonlocal nanobeam resting on viscoelastic foundation: fractional derivative model with two retardation times and fractional parameters. Meccanica 52, 363–382 (2017). https://doi.org/10.1007/s11012-016-0417-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-016-0417-z

Keywords

Navigation