Skip to main content
Log in

Cohesive energy in graphene/MoS2 heterostructures

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

We establish a cohesive law between parallel graphene and MoS2 sheets based on their van der Waals interaction with Lennard-Jones (LJ) potential. Cohesive energy, force, stress and binding energy per carbon atom are explicitly expressed in terms of parameters in the LJ potential, distance between graphene and each of three layers in MoS2 sheet, and area density of atoms on each layer. Molecular dynamics simulations are carried out to support analytical results. Analytical results are useful to investigate the interaction between graphene and MoS2 sheets, and to design nanoelectromechanical systems with graphene/MoS2 heterostructures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Novoselov KS, Geim AK, Morozov SV, Jiang D, Katsnelson MI, Grigorieva IV, Dubonos SV, Firsov AA (2005) Two-dimensional gas of massless Dirac fermions in graphene. Nature 438:197–200

    Article  ADS  Google Scholar 

  2. Lee C, Wei X, Kysar JW, Hone J (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321:385–388

    Article  ADS  Google Scholar 

  3. Cai W, Moore AL, Zhu Y, Li X, Chen S, Shi L, Ruoff RS (2010) Thermal transport in suspended and supported monolayer graphene grown by chemical vapor deposition. Nano Lett 10(5):1645–1651

    Article  ADS  Google Scholar 

  4. Balandin AA, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F, Lau CN (2008) Superior thermal conductivity of single-layer graphene. Nano Lett 8(3):902–907

    Article  ADS  Google Scholar 

  5. Ghosh S, Calizo I, Teweldebrhan D, Pokatilov EP, Nika DL, Balandin AA, Bao W, Miao F, Lau CN (2008) Extremely high thermal conductivity of graphene: prospects for thermal management applications in nanoelectronic circuits. Appl Phys Lett 92:151911

    Article  ADS  Google Scholar 

  6. Xu X et al (2014) Length-dependent thermal conductivity in suspended single-layer graphene. Nat Commun 5:3689

    ADS  Google Scholar 

  7. Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A (2011) Single-layer MoS2 transistors. Nat Nanotechnol 6:147–150

    Article  ADS  Google Scholar 

  8. Sangwan VK, Arnold HN, Jariwala D, Marks TJ, Lauhon LJ, Hersam MC (2013) Low-frequency electronic noise in single-layer MoS2 transistors. Nano Lett 13(9):4351–4355

    Article  ADS  Google Scholar 

  9. Eknapakul T et al (2014) Electronic structure of a quasi-freestanding MoS2 monolayer. Nano Lett 14:1312–1316

    Article  ADS  Google Scholar 

  10. Yu L et al (2014) Graphene/MoS2 hybrid technology for large-scale two-dimensional electronics. Nano Lett 14(6):3055–3063

    Article  ADS  Google Scholar 

  11. Zhang W et al. (2014) Ultrahigh-gain photodetectors based on atomically thin graphene-MoS2 heterostructures. Scientific Reports 4: Article number: 3826

  12. Jariwala D, Sangwan VK, Lauhon LJ, Marks TJ, Hersam MC (2014) Emerging device applications for semiconducting two-dimensional transition metal dichalcogenides. ACS Nano 8(2):1102–1120

    Article  Google Scholar 

  13. Britne L et al (2013) Strong light-matter interactions in heterostructures of atomically thin films. Science 340(6138):1311–1314

    Article  ADS  Google Scholar 

  14. Zan R, Ramasse QM, Jalil R, Georgiou T, Bangert U, Novoselov KS (2013) Control of radiation damage in MoS2 by graphene encapsulation. ACS Nano 7(11):10167–10174

    Article  Google Scholar 

  15. Jiang JW, Park HS (2014) Mechanical properties of MoS2/graphene heterostructures. Appl Phys Lett 105:033108

    Article  ADS  Google Scholar 

  16. Jiang LY, Huang Y, Jiang H, Ravichandran G, Gao H, Hwang KC, Liue B (2006) A cohesive law for carbon nanotube/polymer interfaces based on the van der Waals force. J Mech Phys Solids 54:2436–2452

    Article  ADS  MATH  Google Scholar 

  17. Zhao J, Jiang JW, Jia Y, Guo W, Rabczuk T (2013) A theoretical analysis of cohesive energy between carbon nanotubes, graphene and substrates. Carbon 57:108–119

    Article  Google Scholar 

  18. Zhang C, Lou J, Song J (2014) A cohesive law for interfaces in graphene/hexagonal boron nitride heterostructure. J Appl Phys 115:144308

    Article  ADS  Google Scholar 

  19. Zhao J, Jia Y, Wei N, Rabczuk T (2015) Binding energy and mechanical stability of two parallel and crossing carbon nanotubes. Proc R Soc A Math Phys Eng Sci 471:20150229

    Article  ADS  Google Scholar 

  20. Zhao J, Jiang JW, Wang L, Guo W, Rabczuk T (2014) Coarse-grained potentials of single-walled carbon nanotubes. J Mech Phys Solids 71:197–218

    Article  ADS  Google Scholar 

  21. Ben S, Zhao J, Zhang Y, Qin Y, Rabczuk T (2015) The interface strength and debonding for composite structures: review and recent developments. Compos Struct 129:8–26

    Article  Google Scholar 

  22. Zhao J, Lu L, Zhang Z, Guo W, Rabczuk T (2015) Continuum modeling of the cohesive energy for the interfaces between films, spheres, coats and substrates. Comput Mater Sci 96:432–438

    Article  Google Scholar 

  23. Ben S, Zhao J, Rabczuk T (2014) A theoretical analysis of interface debonding for coated sphere with functionally graded interphase. Compos Struct 117:288–297

    Article  Google Scholar 

  24. Tersoff J (1989) Modeling solid-state chemistry: interatomic potentials for multicomponent systems. Phys Rev B 39(8):5566–5568

    Article  ADS  Google Scholar 

  25. Lindsay L, Broido DA (2010) Optimized Tersoff and Brenner empirical potential parameters for lattice dynamics and phonon thermal transport in carbon nanotubes and graphene. Phys Rev B 81:205441

    Article  ADS  Google Scholar 

  26. Feng J, Qian X, Huang CW, Li J (2012) Strain-engineered artificial atom as a broad-spectrum solar energy funnel. Nat Phot 6:866

    Article  Google Scholar 

  27. Tildesley DJ, Madden PA (1981) An effective pair potential for liquid carbon disulphide. Mol Phys 42(5):1137–1156

    Article  ADS  Google Scholar 

  28. Stewart JA, Spearot DE (2013) Atomistic simulations of nanoindentation on the basal plane of crystalline molybdenum disulfide (MoS2). Modell Simul Mater Sci Eng 21:045003

    Article  ADS  Google Scholar 

  29. Plimpton S (1995) Fast parallel algorithms for short-range molecular dynamics. J Comput Phys 117(1):1–19

    Article  ADS  MATH  Google Scholar 

  30. Sahin H, Cahangirov S, Topsakal M, Bekaroglu E, Akturk E, Senger RT, Ciraci S (2009) Monolayer honeycomb structures of group-IV elements and III-V binary compounds: first-principles calculations. Phys Rev B 80(15):155453

    Article  ADS  Google Scholar 

  31. Ataca C, Topsakal M, Akturk E, Ciraci S (2011) A comparative study of lattice dynamics of three- and two-dimensional MoS2. J Phys Chem C 115:16354–16361

    Article  Google Scholar 

  32. Miwa RH, Scopel WL (2013) Lithium incorporation at the MoS2/graphene interface: an ab initio investigation. J Phys Condens Matter 25:445301

    Article  ADS  Google Scholar 

  33. Ma Y, Dai Y, Guo M, Niu C, Huang B (2011) Graphene adhesion on MoS2 monolayer: an ab initio study. Nanoscale 3:3883

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was supported by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under the Grant Number: 107.02-2014.03.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minh-Quy Le.

Appendix

Appendix

Regarding Eqs. (1) and (3), one gets:

$$\phi_{1} = 4\rho_{C} \rho_{S} \varepsilon_{CS} \int\limits_{0}^{ + \infty } {dx_{u} } \int\limits_{ - \infty }^{{L_{o} }} {\left( {\sigma_{CS}^{12} A - \sigma_{CS}^{6} B} \right)dx_{1} }$$
(28)

where

$$A = \frac{63\pi }{{256\left[ {\left( {x_{1} - x_{u} } \right)^{2} + h_{1}^{2} } \right]^{{{{11} \mathord{\left/ {\vphantom {{11} 2}} \right. \kern-0pt} 2}}} }};\quad B = \frac{3\pi }{{8\left[ {\left( {x_{1} - x_{u} } \right)^{2} + h_{1}^{2} } \right]^{{{5 \mathord{\left/ {\vphantom {5 2}} \right. \kern-0pt} 2}}} }}$$
(29)

It is noted that

$$\int {\frac{{dx_{1} }}{{\left[ {\left( {x_{1} - x_{u} } \right)^{2} + h_{1}^{2} } \right]^{{{{11} \mathord{\left/ {\vphantom {{11} 2}} \right. \kern-0pt} 2}}} }}} = \frac{{\left( {x_{1} - x_{u} } \right)}}{{315h_{1}^{10} r^{*}}}\left[ {128 + 64\left( {\frac{{h_{1} }}{r^{*}}} \right)^{2} + \,48\left( {\frac{{h_{1} }}{r^{*}}} \right)^{4} + 40\left( {\frac{{h_{1} }}{r^{*}}} \right)^{6} + 35\left( {\frac{{h_{1} }}{r^{*}}} \right)^{8} } \right]$$
(30)

where

$${r^{*}} = \sqrt {\left( {x_{1} - x_{u} } \right)^{2} + h_{1}^{2} }$$
(31)

In general, \(h_{1} < r^{*}\), by neglecting the higher order term, one can get

$$\int {\frac{{dx_{1} }}{{\left[ {\left( {x_{1} - x_{u} } \right)^{2} + h_{1}^{2} } \right]^{{{{11} \mathord{\left/ {\vphantom {{11} 2}} \right. \kern-0pt} 2}}} }}} \approx \frac{{\left( {x_{1} - x_{u} } \right)}}{{315h_{1}^{10} r^{*}}}\left[ {128 + 64\left( {\frac{{h_{1} }}{r^{*}}} \right)^{2} } \right]$$
(32)

Combining Eqs. (28), (29), (30), and (32) yields

$$\phi_{1} = 4\rho_{C} \rho_{S} \varepsilon_{CS} \int\limits_{0}^{ + \infty } {\left( {\sigma_{CS}^{12} C - \sigma_{CS}^{6} D} \right)dx_{u} }$$
(33)

where

$$C = \frac{\pi }{{20h_{1}^{10} }}\left\{ {2 - \frac{{\left( {x_{u} - L_{o} } \right)h_{1}^{2} }}{{\left[ {\left( {x_{u} - L_{o} } \right)^{2} + h_{1}^{2} } \right]^{{{3 \mathord{\left/ {\vphantom {3 2}} \right. \kern-0pt} 2}}} }} - \frac{{2\left( {x_{u} - L_{o} } \right)}}{{\left[ {\left( {x_{u} - L_{o} } \right)^{2} + h_{1}^{2} } \right]^{{{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-0pt} 2}}} }}} \right\} ,$$
(34)
$$D = \frac{\pi }{{8h_{1}^{4} }}\left\{ {2 - \frac{{\left( {x_{u} - L_{o} } \right)\left[ {2\left( {x_{u} - L_{o} } \right)^{2} + 3h_{1}^{2} } \right]}}{{\left[ {\left( {x_{u} - L_{o} } \right)^{2} + h_{1}^{2} } \right]^{{{3 \mathord{\left/ {\vphantom {3 2}} \right. \kern-0pt} 2}}} }}} \right\} .$$
(35)

Equation (8) is obtained by integrating Eq. (33) after substituting Eqs. (34) and (35) into it.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Le, MQ. Cohesive energy in graphene/MoS2 heterostructures. Meccanica 52, 307–315 (2017). https://doi.org/10.1007/s11012-016-0402-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-016-0402-6

Keywords

Navigation