Skip to main content
Log in

Slow motion of a porous spherical particle with a rigid core in a spherical fluid cavity

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

We present an analytical study of viscous flow past a porous spherical particle composed of a rigid core inside. We consider that this particle is located inside a spherical fluid cavity filled with incompressible Newtonian fluid, under the creeping flow conditions. The governing equations inside the fluid region and the porous region are governed by Stokes equation and Brinkman equation respectively, supplemented with the corresponding mass conservation. Hydrodynamic drag and torque exerted by the fluid on particle are obtained which are later used to obtain the translational and rotational mobility of the particle inside the spherical cavity. In general the presence of cavity wall retards the particle movement as a result the mobility parameter becomes smaller than unity. The boundary effect is more pronounced when the separation distance between the particle surface and the cavity wall is less. Various limiting cases are obtained which agree with earlier existing results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

a :

Radius of the porous sphere (m)

k :

Permeability of the porous sphere (\({\mathrm{m}}^{2}\))

r :

Radial distance

\({\mathbf{q}}^f\) :

Dimensionless velocity in fluid region

\(P^f\) :

Dimensionless pressure in fluid region

\({\mathbf{q}}^p\) :

Dimensionless velocity in porous region

\(P^p\) :

Dimensionless pressure in porous region

\(p_{0}\) :

Constant pressure

U :

Magnitude of the imposed velocity \({\mathbf{q}}^{imp}\)

Da :

Darcy number

\(A,\; B\) :

Scalars

\(f_{n}\) :

Modified spherical Bessel function of first kind

\(g_{n}\) :

Modified spherical Bessel function of second kind

\(S_{n},\;T_{n}\) :

Spherical harmonics

\(P_{n}^{m}\) :

Associated Legendre polynomial

\({M}^{T}\) :

Translational mobility

\({M}^{R}\) :

Rotational mobility

\(\theta\) :

Inclination

\(\varphi\) :

Azimuth angle

\(\varepsilon\) :

Dimensionless core radius

\(\lambda\) :

Dimensionless parameter

\(\zeta\) :

Stress jump coefficient

\(\rho\) :

Density of the fluid (\({\mathrm{kg/m}}^{3}\))

\(\mu\) :

Dynamic viscosity (\({\mathrm{kgm}}^{-1}{\mathrm{s}}^{-1}\))

References

  1. Happel J (1958) Viscous flow in multiparticle systems: slow motion of fluids relative to beds of spherical particles. AIChE J 4:197–201

    Article  MathSciNet  Google Scholar 

  2. Kuwabara S (1959) The force experienced by randomly distributed parallel cylinders or spheres in a viscous flow at small Reynolds numbers. J Phys Soc Jpn 14:527–532

    Article  ADS  MathSciNet  Google Scholar 

  3. Neale G, Epstein N (1973) Creeping flow relative to permeable spheres. Chem Eng Sci 28:1864–1875

    Article  Google Scholar 

  4. Davis RH, Howard A (1993) Stone, Flow through beds of porous particles. Chem Eng Sci 23:3993–4005

    Article  Google Scholar 

  5. Prakash J, Raja Sekhar GP, Kohr M (2011) Stokes flow of an assemblage of porous particles: stress jump condition. Z Angew Math Phys ZAMP 62:1027–1046

    Article  MathSciNet  MATH  Google Scholar 

  6. Sutherland DN, Tan CT (1970) Sedimentation of a porous sphere. Chem Eng Sci 25:1948–1950

    Article  Google Scholar 

  7. Palaniappan D (1993) Arbitrary Stokes flow past a porous sphere. Mech Res Commun 20:309–317

    Article  MATH  Google Scholar 

  8. Raja Sekhar GP, Amaranath T (1996) Stokes flow past a porous sphere with an impermeable core. Mech Res Commun 23:449–460

    Article  MATH  Google Scholar 

  9. Masliyah JH, Neale G, Malysa K, Van De Ven TGM (1987) Creeping flow over a composite sphere: solid core with porous shell. Chem Eng Sci 42:245–253

    Article  Google Scholar 

  10. Padmavathi BS, Amaranath T, Nigam SD (1993) Stokes flow past a porous sphere using Brinkman’s model. Z Angew Math Phys 44:929–939

    Article  MathSciNet  MATH  Google Scholar 

  11. Ochoa-Tapia JA, Whitaker S (1995a) Momentum transfer at the boundary between a porous medium and a homogeneous fluid-theoretical development. Int J Heat Mass Transf 38:2635–2646

    Article  MATH  Google Scholar 

  12. Ochoa-Tapia JA, Whitaker S (1995b) Momentum transfer at the boundary between a porous medium and a homogeneous fluid-comparison with experiment. Int J Heat Mass Transf 38:2647–2655

    Article  MATH  Google Scholar 

  13. Bhattacharyya Anindita, Raja Sekhar GP (2004) Viscous flow past a porous sphere—effect of stress jump condition. Chem Eng Sci 59:4481–4492

    Article  Google Scholar 

  14. Bhattacharyya Anindita, Raja Sekhar GP (2005) Stokes flow inside a porous spherical shell-stress-jump boundary condition. Z Angew Math Phys 56:475–496

    Article  MathSciNet  MATH  Google Scholar 

  15. Partha MK, Murthy PVSN, Raja Sekhar GP (2005) Viscous flow past a porous spherical shell-effect of stress jump boundary condition. J Eng Mech 131:1291–1301

    Article  Google Scholar 

  16. Partha MK, Murthy PVSN, Raja Sekhar GP (2006) Viscous flow past a spherical void in porous media: effect of stress jump boundary condition. J Porous Media 9:745–767

    Article  Google Scholar 

  17. Prakash J, Raja Sekhar GP (2011) Overall bed permeability for flowthrough beds of permeable porous particles using effective mediummodelstress jump condition. Chem Eng Commun 198:85–101

    Article  Google Scholar 

  18. Goyeau BI, Lhuillier D, Gobin D, Velarde MG (2003) Momentum transport at a fluid-porous interface. Int J Heat Mass Transf 46:4071–4081

    Article  MATH  Google Scholar 

  19. Chandesris M, Jamet D (2006) Boundary conditions at a planar fluid-porous interface for a Poiseuille flow. Int J Heat Mass Transf 49:2137–2150

    Article  MATH  Google Scholar 

  20. Valdés-Parada FJ, Álvarez-Ramírez J, Goyeau B, Ochoa-Tapia JA (2009) Computation of jump coefficients for momentum transfer between a porous medium and a fluid using a closed generalized transfer equation. Transp Porous Media 78:439–457

    Article  Google Scholar 

  21. Prakash J, Raja Sekhar GP (2012) Arbitrary oscillatory Stokes flow past a porous sphere using Brinkman model. Meccanica 47:1079–1095

    Article  MathSciNet  MATH  Google Scholar 

  22. Keh HJ, Chou J (2004) Creeping motions of a composite sphere in a concentric spherical cavity. Chem Eng Sci 59:407–415

    Article  Google Scholar 

  23. Keh HJ, Chou J (2005) Creeping motions of a porous spherical shell in a concentric spherical cavity. J Fluids Struct 20:737–747

    Article  Google Scholar 

  24. Lu SY, Lee CT (2001) Boundary effects on creeping motion of an aerosol particle in a non-concentric pore. Chem Eng Sci 56:5207–5216

    Article  Google Scholar 

  25. Raja Sekhar GP, Padmavathi BS, Amaranath T (1997) Complete general solution of the Brinkman equation. Z Angew Math Mech 77:555–556

    Article  MathSciNet  MATH  Google Scholar 

  26. Padmavathi BS, Raja Sekhar GP, Amaranath T (1998) A note on general solutions of Stokes equations. QJMAM 51:2–6

    MathSciNet  MATH  Google Scholar 

  27. Qin Yu, Kaloni PN (1993) Creeping flow past a porous spherical shell. Z Angew Math Mech 73:77–84

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jai Prakash.

Appendix

Appendix

The expressions corresponding to \(D^{0}, D\) and \(E^{0}, E\) are given as follows

$$\begin{aligned} D^{0}= & \, \frac{D^{0}_{1}}{D^{0}_{2}}\\ D^{0}_1= & \, \left( 2\, \zeta \,{\lambda }^{3}+\zeta \,{ \varepsilon }^{3}{\lambda }^{3}+3\, \zeta \,{\varepsilon }^{2}{ \lambda }^{2}+3\, \zeta \,\varepsilon \,\lambda \right) \cosh (\lambda ){\mathrm{e}}^\lambda -\left( \zeta \,{\varepsilon }^{3}{\lambda }^{4}+3\, \zeta \,{\varepsilon }^{2}{\lambda }^{3}+3\, \zeta \, \varepsilon \,{\lambda }^{2}+ \zeta \,{\varepsilon }^{3}{ \lambda }^{2}+3\, \zeta \,{\varepsilon }^{2}\lambda +2\, \zeta \,{\lambda }^{2}+3\, \zeta \,\varepsilon \right. \\& \left. +\,2\, \zeta \,{\lambda }^{4} \right) \sinh (\lambda ){\mathrm{e}}^\lambda +\left( {\mathrm{e}^{\lambda \,\varepsilon }} \zeta \,{\varepsilon }^{3}{ \lambda }^{2}+ \zeta \,{\varepsilon }^{3}{\lambda }^{4}{ {\mathrm{e}}^{\lambda \,\varepsilon }}+3\, \zeta \,\varepsilon \,{ \lambda }^{2}{{\mathrm{e}}^{\lambda \,\varepsilon }}+3\, \zeta \, \varepsilon \,\lambda \,{{\mathrm{e}}^{\lambda \,\varepsilon }}- \zeta \,{\lambda }^{3}\varepsilon \,{{\mathrm{e}}^{\lambda }}+ \zeta \,{\varepsilon }^{3}{\lambda }^{3}{\mathrm{e}^{\lambda \,\varepsilon }}+{ \lambda }^{2}\varepsilon \,{\mathrm{e}^{\lambda }}+2\, \zeta \, {\lambda }^{2}{\mathrm{e}^{\lambda \,\varepsilon }}\right. \\& \left. +\,2\, \zeta \,{\lambda }^{4}{\mathrm{e}^{\lambda \,\varepsilon }}+2\, \zeta \,{\lambda }^{3}{\mathrm{e}^{\lambda \,\varepsilon }}+3\,{\mathrm{e}^{ \lambda \,\varepsilon }} \zeta \,\varepsilon \right) \sinh (\lambda \varepsilon ) +\left( {\lambda }^{2}\varepsilon \,{\mathrm{e}^{\lambda }}-3\,{\mathrm{e}^{\lambda \, \varepsilon }} \zeta \,{\varepsilon }^{2}\lambda -3\, \zeta \,{\varepsilon }^{2}{\lambda }^{3}{\mathrm{e}^{\lambda \, \varepsilon }}-3\, \zeta \,{\varepsilon }^{2}{\lambda }^{2}{ \mathrm{e}^{\lambda \,\varepsilon }}- \zeta \,{\lambda }^{3} \varepsilon \,{\mathrm{e}^{\lambda }} \right) \cosh (\lambda \varepsilon )\\ D^{0}_2= & \, \left( \zeta \,{\varepsilon }^{3}{\lambda }^{4}{\mathrm{e}^{\lambda } }+3\, \zeta \,{\varepsilon }^{2}{\lambda }^{3}{\mathrm{e}^{ \lambda }}+3\, \zeta \,\varepsilon \,{\lambda }^{2}{\mathrm{e}^ {\lambda }}+3\, \zeta \,\varepsilon \,\lambda \,{\mathrm{e}^{ \lambda \,\varepsilon }}-\lambda \,{\mathrm{e}^{\lambda }}+3\, \zeta \,{\mathrm{e}^{\lambda }}+4\, \zeta \,{\lambda }^{ 2}{\mathrm{e}^{\lambda }}+2\, \zeta \,{\lambda }^{4}{ \mathrm{e}^{\lambda }} \right) \sinh (\lambda )\\& +\,\left( - \zeta \,{\varepsilon }^{3}{\lambda }^{3}{\mathrm{e}^{\lambda }}-3\, \zeta \,{\varepsilon }^{2}{\lambda }^{2}{\mathrm{e}^{ \lambda }}-3\, \zeta \,\varepsilon \,\lambda \,{\mathrm{e}^{ \lambda }}+3\, \zeta \,\varepsilon \,\lambda \,{\mathrm{e}^{ \lambda \,\varepsilon }}-2\, \zeta \,{\lambda }^{3}{\mathrm{e}^ {\lambda }}-3\, \zeta \,\lambda \,{\mathrm{e}^{\lambda }} \right) \cosh (\lambda )\\& +\,\left( 3\, \zeta \,{\varepsilon }^{2}{\lambda }^{3}{\mathrm{e}^{ \lambda \,\varepsilon }}+3\, \zeta \,{\varepsilon }^{2}{\lambda }^{2}{\mathrm{e}^{\lambda \,\varepsilon }}+ \zeta \,{\lambda }^ {3}\varepsilon \,{\mathrm{e}^{\lambda }}+3\, \zeta \,\varepsilon \,\lambda \,{\mathrm{e}^{\lambda }}-{\lambda }^{2}\varepsilon \,{\mathrm{e}^{ \lambda }} \right) \cosh (\lambda \varepsilon )+ \left( 3\, \zeta \,\varepsilon \,\lambda \,{\mathrm{e}^{\lambda }}-{ \lambda }^{2}\varepsilon \,{\mathrm{e}^{\lambda }}-3\, \zeta \, \lambda \,{\mathrm{e}^{\lambda \,\varepsilon }}-2\, \zeta \,{ \lambda }^{3}{\mathrm{e}^{\lambda \,\varepsilon }}\right. \\& \left. -\,2\, \zeta \, {\lambda }^{4}{\mathrm{e}^{\lambda \,\varepsilon }}-4\, \zeta \,{\lambda }^{2}{\mathrm{e}^{\lambda \,\varepsilon }}- \zeta \, {\varepsilon }^{3}{\lambda }^{4}{\mathrm{e}^{\lambda \,\varepsilon }}-3\, \zeta \,\varepsilon \,{\lambda }^{2}{\mathrm{e}^{\lambda \,\varepsilon }}+ \lambda \,{\mathrm{e}^{\lambda \,\varepsilon }}-3\, \zeta \,{ \mathrm{e}^{\lambda \,\varepsilon }}+ \zeta \,{\lambda }^{3} \varepsilon \,{\mathrm{e}^{\lambda }}-3\, \zeta \,\varepsilon \, \lambda \,{\mathrm{e}^{\lambda \,\varepsilon }}- \zeta \,{ \varepsilon }^{3}{\lambda }^{3}{\mathrm{e}^{\lambda \,\varepsilon }} \right) \sinh (\lambda \varepsilon ) \end{aligned}$$
$$\begin{aligned} \beta _{1}^{\prime }= & \, \frac{3D}{4}\\ D= & \, \frac{D_{1}}{D_{2}+D_{3}}\\ D_{1}= & \, 4\lambda \left[ -120\, \zeta \,\lambda \,\varepsilon \,{l}^{5}\left( f_{1}(\lambda )g_{2}(\lambda )+f_{2}(\lambda )g_{1}(\lambda )\right) +24\, \zeta \,{\lambda }^{2} \left( 1-{l}^{5}\right) \left( f_{1}(\lambda )g_{1}(\lambda \varepsilon )-f_{1}(\lambda \varepsilon )g_{1}(\lambda )\right) +\left( -4\, \zeta \,{\lambda }^{3}{\varepsilon }^{4}-8\, \zeta \,{\lambda }^{3}\varepsilon \right. \right. \\& \left. +\,120\, \zeta \, \lambda \,{\varepsilon }^{4}{l}^{5}+4\, \zeta \,{\lambda }^{ 3}{\varepsilon }^{4}{l}^{5}+8\, \zeta \,{\lambda }^{3} \varepsilon \,{l}^{5} \right) f_{1}(\lambda )g_{2}(\lambda \varepsilon )+\left( -12\,{\lambda }^{3} \zeta \,{l}^{5}+60\,{l}^{5}+60\, \lambda \, \zeta \,{l}^{5}+18\,{\lambda }^{2}{l}^{5}+12 \, \zeta \,{\lambda }^{3} \right) \left( f_{2}(\lambda )g_{1}(\lambda \varepsilon )\right. \\& +\,\left. f_{1}(\lambda \varepsilon )g_{2}(\lambda )\right) + \left( 40\,{\lambda }^{2} \zeta \,{\varepsilon }^{4}{l}^{5}-20\, \zeta \,{\lambda }^{2}\varepsilon \,{l}^{5}-4\,{\lambda }^{ 4} \zeta \,\varepsilon -3\,{\lambda }^{3}{\varepsilon }^{4}{l}^ {5}-6\,{\lambda }^{3}\varepsilon \,{l}^{5}-2\,{\lambda }^{4} \zeta \,{\varepsilon }^{4}-20\,{l}^{5}\varepsilon \,\lambda +4\,{\lambda }^{4 } \zeta \,\varepsilon \,{l}^{5}+2\,{\lambda }^{4} \zeta \,{\varepsilon }^{4}{l}^{5}\right) \\& \times \, f_{2}(\lambda )g_{2}(\lambda \varepsilon )+ \left( 2\,{\varepsilon }^{3}{\lambda }^{2}-60\,{l}^{5}{\varepsilon }^{3}-60\, \zeta \,\lambda \,{l}^{5}{\varepsilon }^{3}+2\, \zeta \,{\lambda }^{3}{l}^{5}{\varepsilon }^{3}-20\,{\lambda }^{2}{l}^{5} {\varepsilon }^{3}-2\,{\varepsilon }^{3} \zeta \,{\lambda }^{3} \right) \left( f_{1}(\lambda \varepsilon )g_{2}(\lambda \varepsilon )+f_{2}(\lambda \varepsilon )g_{1}(\lambda \varepsilon )\right) \\& +\,\left( -4\, \zeta \,{\lambda }^{3}{\varepsilon }^{4}-8\, \zeta \,{\lambda }^{3}\varepsilon +120\, \zeta \, \lambda \,{\varepsilon }^{4}{l}^{5}+4\, \zeta \,{\lambda }^{ 3}{\varepsilon }^{4}{l}^{5}+8\, \zeta \,{\lambda }^{3} \varepsilon \,{l}^{5} \right) f_{2}(\lambda \varepsilon )g_{1}(\lambda )+\left( -2\,{\lambda }^{4} \zeta \,{\varepsilon }^{4}{l}^{5}-4\,{ \lambda }^{4} \zeta \,\varepsilon \,{l}^{5}+20\, \zeta \,{\lambda }^{2}\varepsilon \,{l}^{5}\right. \\& -\,\left. \left. 40\,{\lambda }^{2} \zeta \,{\varepsilon }^{4}{l}^{5}+6\,{\lambda }^{3} \varepsilon \,{l}^{5}+3\,{\lambda }^{3}{\varepsilon }^{4}{l}^{5}+20\,{l}^{5} \varepsilon \,\lambda +2\,{\lambda }^{4} \zeta \,{\varepsilon }^ {4}+4\,{\lambda }^{4} \zeta \,\varepsilon \right) f_{2}(\lambda \varepsilon )g_{2}(\lambda )\right] \\ D_{2}= & \, \left( 24\, \zeta \,{\lambda }^{2}\varepsilon +108\,{l}^{5} \varepsilon \,\lambda +240\, \zeta \,{\lambda }^{2}\varepsilon \,{l}^{3}-480\, \zeta \,{\lambda }^{2}\varepsilon \,{l}^{6} +216\, \zeta \,{\lambda }^{2}\varepsilon \,{l}^{5} \right) f_{1}(\lambda )g_{2}(\lambda )+\left( 72+360\,{l}^{3}-432\,{l}^{5}-240\, \zeta \,{\lambda }^{ 3}{l}^{3}\right. \\& \left. +\,216\, \zeta \,{\lambda }^{3}l+216\, \zeta \,{\lambda }^{3}{l}^{5}-360\, \zeta \, \lambda \,{l}^{3}-96\, \zeta \,{\lambda }^{3}{l}^{6}+432 \, \zeta \,\lambda \,{l}^{5}-108\,{l}^{5}{\lambda }^{2}+ 108\,{l}^{3}{\lambda }^{2}-96\, \zeta \,{\lambda }^{3}- 72\, \zeta \,\lambda \right) f_{1}(\lambda )g_{1}(\lambda \varepsilon )\\& +\,\left( 120\, \zeta \,{\lambda }^{2}\varepsilon \,{l}^{3}+32\, \zeta \,{\lambda }^{4}\varepsilon \,{l}^{6}-216\, \zeta \,{\lambda }^{2}{\varepsilon }^{4}{l}^{5}-240\, \zeta \,{\lambda }^{2}{\varepsilon }^{4}{l}^{3}-72\, \zeta \,{\lambda }^{4}\varepsilon \,l-36\, \zeta \,{ \lambda }^{4}{\varepsilon }^{4}{l}^{5}-72\, \zeta \,{ \lambda }^{4}\varepsilon \,{l}^{5}+480\, \zeta \,{\lambda }^ {2}{\varepsilon }^{4}{l}^{6}+24\, \zeta \,{\lambda }^{2} \varepsilon \right. \\& -\,24\,{\varepsilon }^{4} \zeta \,{\lambda }^{2}-36\, \zeta \,{\lambda }^{4}{\varepsilon }^{4}l+32\, \zeta \,{\lambda }^{4}\varepsilon +16\, \zeta \,{ \lambda }^{4}{\varepsilon }^{4}+144\,{l}^{5}\varepsilon \,\lambda +36\,{l}^{5} \varepsilon \,{\lambda }^{3}-36\,{l}^{3}\varepsilon \,{\lambda }^{3}+18\,{l}^{5} {\varepsilon }^{4}{\lambda }^{3}-18\,{l}^{3}{\varepsilon }^{4}{\lambda }^{3}-120 \,{l}^{3}\varepsilon \,\lambda -108\,{l}^{5}{\varepsilon }^{4}\lambda \\& \left. +\,80\, \zeta \,{\lambda }^{4}\varepsilon \,{l}^{3}+40\, \zeta \,{\lambda }^{4}{\varepsilon }^{4}{l}^{3}-144\, \zeta \,{\lambda }^{2}\varepsilon \,{l}^{5}+16\, \zeta \,{\lambda }^{4}{\varepsilon }^{4}{l}^{6}-24\,\lambda \,\varepsilon \right) f_{1}(\lambda )g_{2}(\lambda \varepsilon )+\left( 24\, \zeta \,{\lambda }^{2}\varepsilon +108\,{l}^{5} \varepsilon \,\lambda +240\, \zeta \,{\lambda }^{2}\varepsilon \,{l}^{3}-480\, \zeta \,{\lambda }^{2}\varepsilon \,{l}^{6} \right. \\& \left. +\,216\, \zeta \,{\lambda }^{2}\varepsilon \,{l}^{5} \right) f_{2}(\lambda )g_{1}(\lambda )+\left( -120\,{\lambda }^{4} \zeta \,{l}^{3}+108\,{\lambda }^{4} \zeta \,l+108\,{\lambda }^{4} \zeta \, {l}^{5}-300\,{\lambda }^{2} \zeta \,{l}^{3}-48\,{ \lambda }^{4} \zeta \,{l}^{6}+108\,{\lambda }^{2} \zeta \,{l}^{5}+240\,{\lambda }^{2} \zeta \,{l}^{6}-48\, \zeta \,{\lambda }^{2}\right. \\& \left. -\,108\,{ \lambda }^{3}{l}^{5}+72\,{\lambda }^{3}{l}^{6}-432\,\lambda \,{l}^{5}+240 \,\lambda \,{l}^{6}+60\,\lambda \,{l}^{3}+36\,{\lambda }^{3}{l}^{3}-48\, \zeta \,{\lambda }^{4}+24\,\lambda \right) f_{2}(\lambda )g_{1}(\lambda \varepsilon )\\& + \,\left( -8\,{\lambda }^{2}\varepsilon +16\, \zeta \,{\lambda }^{3} \varepsilon -8\,{\varepsilon }^{4} \zeta \,{\lambda }^{3}-24\,{ \lambda }^{4}\varepsilon \,{l}^{6}+18\,{\lambda }^{4}{\varepsilon }^{4}{l}^{5}+ 36\,{\lambda }^{4}\varepsilon \,{l}^{5}+8\,{\lambda }^{5} \zeta \,{\varepsilon }^{4}+16\,{\lambda }^{5} \zeta \, \varepsilon -36\,{l}^{5}{\varepsilon }^{4}{\lambda }^{2}-80\,{\lambda }^{2} \varepsilon \,{l}^{6}-6\,{\lambda }^{4}{\varepsilon }^{4}{l}^{3}\right. \\& +\,144\,{\lambda } ^{2}\varepsilon \,{l}^{5}-12\,{\lambda }^{4}\varepsilon \,{l}^{3}-20\,{\lambda } ^{2}\varepsilon \,{l}^{3}-12\,{\lambda }^{4}{\varepsilon }^{4}{l}^{6}+160\,{ \lambda }^{3} \zeta \,{\varepsilon }^{4}{l}^{6}-36\,{ \lambda }^{3} \zeta \,\varepsilon \,{l}^{5}+100\,{\lambda }^ {3} \zeta \,\varepsilon \,{l}^{3}+40\,{\lambda }^{5} \zeta \,\varepsilon \,{l}^{3}-80\,{\lambda }^{3} \zeta \,\varepsilon \,{l}^{6}+16\,{\lambda }^{5} \zeta \,\varepsilon \,{l}^{6}\\& \left. -\,72\,{\lambda }^{3} \zeta \,{\varepsilon }^{4}{l}^{5}-80\,{\lambda }^{3} \zeta \,{ \varepsilon }^{4}{l}^{3}+20\,{\lambda }^{5} \zeta \,{ \varepsilon }^{4}{l}^{3}-18\,{\lambda }^{5} \zeta \,{ \varepsilon }^{4}{l}^{5}-36\,{\lambda }^{5} \zeta \, \varepsilon \,l+8\,{\lambda }^{5} \zeta \,{\varepsilon }^{4}{l} ^{6}-18\,{\lambda }^{5} \zeta \,{\varepsilon }^{4}l-36\,{ \lambda }^{5} \zeta \,\varepsilon \,{l}^{5} \right) f_{2}(\lambda )g_{2}(\lambda \varepsilon ) \end{aligned}$$
$$\begin{aligned} D_{3}= & \, \left( -72+432\,{l}^{5}-360\,{l}^{3}+72\, \zeta \,\lambda +108 \,{l}^{5}{\lambda }^{2}-108\,{l}^{3}{\lambda }^{2}+96\, \zeta \,{\lambda }^{3}+96\, \zeta \,{\lambda }^{3}{l} ^{6}-216\, \zeta \,{\lambda }^{3}{l}^{5}+240\, \zeta \,{\lambda }^{3}{l}^{3}-216\, \zeta \,{ \lambda }^{3}l-432\, \zeta \,\lambda \,{l}^{5}\right. \\& \left. +\,360\, \zeta \,\lambda \,{l}^{3} \right) f_{1}(\lambda \varepsilon )g_{1}(\lambda )+\left( -120\,{\lambda }^{4} \zeta \,{l}^{3}+108\,{\lambda }^{4} \zeta \,l+108\,{\lambda }^{4} \zeta \, {l}^{5}-300\,{\lambda }^{2} \zeta \,{l}^{3}-48\,{ \lambda }^{4} \zeta \,{l}^{6}+108\,{\lambda }^{2} \zeta \,{l}^{5}+240\,{\lambda }^{2} \zeta \,{l}^{6}-48\, \zeta \,{\lambda }^{2}\right. \\& \left. -\,108\,{ \lambda }^{3}{l}^{5}+72\,{\lambda }^{3}{l}^{6}-432\,\lambda \,{l}^{5}+240 \,\lambda \,{l}^{6}+60\,\lambda \,{l}^{3}+36\,{\lambda }^{3}{l}^{3}-48\, \zeta \,{\lambda }^{4}+24\,\lambda \right) f_{1}(\lambda \varepsilon )g_{2}(\lambda )\\& +\,\left( -240\, \zeta \,{\lambda }^{2}{l}^{6}{\varepsilon }^{3}+180 \, \zeta \,{\lambda }^{2}{\varepsilon }^{3}{l}^{3}-18\, \zeta \,{\lambda }^{4}l{\varepsilon }^{3}+20\, \zeta \,{\lambda }^{4}{l}^{3}{\varepsilon }^{3}-18\, \zeta \,{\lambda }^{4}{l}^{5}{\varepsilon }^{3}+36\, \zeta \,{\lambda }^{2}{l}^{5}{\varepsilon }^{3}+8\, \zeta \,{\lambda }^{4}{l}^{6}{\varepsilon }^{3}-8\,{\lambda }^{3}{ \varepsilon }^{3}+72\,{l}^{5}{\lambda }^{3}{\varepsilon }^{3}\right. \\& -\,\left. 80\,{l}^{6}{ \lambda }^{3}{\varepsilon }^{3}+288\,{l}^{5}{\varepsilon }^{3}\lambda +60\,{ \varepsilon }^{3}\lambda \,{l}^{3}-2\,{l}^{3}{\lambda }^{3}{\varepsilon }^{3}+18 \,l{\lambda }^{3}{\varepsilon }^{3}+8\,{\varepsilon }^{3} \zeta \,{\lambda }^{4}-240\,{l}^{6}{\varepsilon }^{3}\lambda +24\,{ \varepsilon }^{3} \zeta \,{\lambda }^{2} \right) f_{1}(\lambda \varepsilon )g_{2}(\lambda \varepsilon )\\& +\,\left( 120\, \zeta \,{\lambda }^{2}\varepsilon \,{l}^{3}+32\, \zeta \,{\lambda }^{4}\varepsilon \,{l}^{6}-216\, \zeta \,{\lambda }^{2}{\varepsilon }^{4}{l}^{5}-240\, \zeta \,{\lambda }^{2}{\varepsilon }^{4}{l}^{3}-72\, \zeta \,{\lambda }^{4}\varepsilon \,l-36\, \zeta \,{ \lambda }^{4}{\varepsilon }^{4}{l}^{5}-72\, \zeta \,{ \lambda }^{4}\varepsilon \,{l}^{5}+480\, \zeta \,{\lambda }^ {2}{\varepsilon }^{4}{l}^{6}+24\, \zeta \,{\lambda }^{2} \varepsilon \right. \\& -\,24\,{\varepsilon }^{4} \zeta \,{\lambda }^{2}-36\, \zeta \,{\lambda }^{4}{\varepsilon }^{4}l+32\, \zeta \,{\lambda }^{4}\varepsilon +16\, \zeta \,{ \lambda }^{4}{\varepsilon }^{4}+144\,{l}^{5}\varepsilon \,\lambda +36\,{l}^{5} \varepsilon \,{\lambda }^{3}-36\,{l}^{3}\varepsilon \,{\lambda }^{3}+18\,{l}^{5} {\varepsilon }^{4}{\lambda }^{3}-18\,{l}^{3}{\varepsilon }^{4}{\lambda }^{3}-120 \,{l}^{3}\varepsilon \,\lambda -108\,{l}^{5}{\varepsilon }^{4}\lambda \\& \left. +\,80\, \zeta \,{\lambda }^{4}\varepsilon \,{l}^{3}+40\, \zeta \,{\lambda }^{4}{\varepsilon }^{4}{l}^{3}-144\, \zeta \,{\lambda }^{2}\varepsilon \,{l}^{5}+16\,\zeta \,{\lambda }^{4}{\varepsilon }^{4}{l}^{6}-24\,\lambda \,\varepsilon \right) f_{2}(\lambda \varepsilon )g_{1}(\lambda )\\& +\,\left( 8\,{\lambda }^{2}\varepsilon -16\, \zeta \,{\lambda }^{3} \varepsilon +8\,{\varepsilon }^{4} \zeta \,{\lambda }^{3}+24\,{ \lambda }^{4}\varepsilon \,{l}^{6}-18\,{\lambda }^{4}{\varepsilon }^{4}{l}^{5}- 36\,{\lambda }^{4}\varepsilon \,{l}^{5}-8\,{\lambda }^{5} \zeta \,{\varepsilon }^{4}-16\,{\lambda }^{5} \zeta \, \varepsilon +36\,{l}^{5}{\varepsilon }^{4}{\lambda }^{2}+80\,{\lambda }^{2} \varepsilon \,{l}^{6}+6\,{\lambda }^{4}{\varepsilon }^{4}{l}^{3}\right. \\& -\,144\,{\lambda } ^{2}\varepsilon \,{l}^{5}+12\,{\lambda }^{4}\varepsilon \,{l}^{3}+20\,{\lambda } ^{2}\varepsilon \,{l}^{3}+12\,{\lambda }^{4}{\varepsilon }^{4}{l}^{6}-160\,{ \lambda }^{3} \zeta \,{\varepsilon }^{4}{l}^{6}+36\,{ \lambda }^{3} \zeta \,\varepsilon \,{l}^{5}-100\,{\lambda }^ {3} \zeta \,\varepsilon \,{l}^{3}-40\,{\lambda }^{5} \zeta \,\varepsilon \,{l}^{3}+80\,{\lambda }^{3} \zeta \,\varepsilon \,{l}^{6}-16\,{\lambda }^{5} \zeta \,\varepsilon \,{l}^{6}\\& \left. +\,72\,{\lambda }^{3} \zeta \,{\varepsilon }^{4}{l}^{5}+80\,{\lambda }^{3} \zeta \,{ \varepsilon }^{4}{l}^{3}-20\,{\lambda }^{5} \zeta \,{ \varepsilon }^{4}{l}^{3}+18\,{\lambda }^{5} \zeta \,{ \varepsilon }^{4}{l}^{5}+36\,{\lambda }^{5} \zeta \, \varepsilon \,l-8\,{\lambda }^{5} \zeta \,{\varepsilon }^{4}{l} ^{6}+18\,{\lambda }^{5} \zeta \,{\varepsilon }^{4}l+36\,{ \lambda }^{5} \zeta \,\varepsilon \,{l}^{5} \right) f_{2}(\lambda \varepsilon )g_{2}(\lambda )\\& +\,\left( -2\,{l}^{3}{\lambda }^{3}{\varepsilon }^{3}+20\,{\varepsilon }^{3} \zeta \,{\lambda }^{4}{l}^{3}+8\,{\varepsilon }^{3} \zeta \,{\lambda }^{4}{l}^{6}-240\,{\varepsilon }^{3} \zeta \,{\lambda }^{2}{l}^{6}-18\,{\varepsilon }^{3} \zeta \,{\lambda }^{4}{l}^{5}+180\,{\varepsilon }^{3} \zeta \,{\lambda }^{2}{l}^{3}+36\,{\varepsilon }^{3} \zeta \,{\lambda }^{2}{l}^{5}-18\,{\varepsilon }^{3} \zeta \,{\lambda }^{4}l+18\,l{\lambda }^{3}{\varepsilon }^{3}\right. \\& \left. +\,60\,{l}^{3} {\varepsilon }^{3}\lambda +24\,{\varepsilon }^{3} \zeta \,{ \lambda }^{2}+8\,{\varepsilon }^{3} \zeta \,{\lambda }^{4}- 80\,{l}^{6}{\varepsilon }^{3}{\lambda }^{3}-240\,{l}^{6}{\varepsilon }^{3} \lambda +288\,{l}^{5}{\varepsilon }^{3}\lambda +72\,{l}^{5}{\varepsilon }^{3}{ \lambda }^{3}-8\,{\lambda }^{3}{\varepsilon }^{3} \right) f_{2}(\lambda \varepsilon )g_{1}(\lambda \varepsilon ) \end{aligned}$$
$$\begin{aligned} {E}^{0}= & \, {\frac{\begin{array}{l}- \zeta \,{\lambda }^{3}\varepsilon \,\cosh \left( \lambda \right) {\mathrm{e}^{\lambda }}+ \zeta \,{\lambda } ^{2}\varepsilon \,\sinh \left( \lambda \right) {\mathrm{e}^{\lambda }}- \zeta \,{\lambda }^{2}\cosh \left( \lambda \right) { \mathrm{e}^{\lambda }}+ \zeta \,\lambda \,\sinh \left( \lambda \right) {\mathrm{e}^{\lambda }}+{\lambda }^{3}\varepsilon \,\sinh \left( \lambda \right) {\mathrm{e}^{\lambda }}+3\,{\mathrm{e}^{\lambda }} \varepsilon \,\sinh \left( \lambda \right) \lambda \\ -3\,{\lambda }^{2}{ \mathrm{e}^{\lambda }}\varepsilon \,\cosh \left( \lambda \right) +\sinh \left( \lambda \right) {\lambda }^{2}{\mathrm{e}^{\lambda }}+3\,{\mathrm{e}^{ \lambda }}\sinh \left( \lambda \right) -3\,{\mathrm{e}^{\lambda }}\cosh \left( \lambda \right) \lambda + \zeta \,{\lambda }^{3} \varepsilon \,\cosh \left( \lambda \,\varepsilon \right) {\mathrm{e}^{\lambda \, \varepsilon }}- \zeta \,{\lambda }^{2}\sinh \left( \lambda \,\varepsilon \right) {\mathrm{e}^{\lambda \,\varepsilon }}\\ +\zeta \,{\lambda }^{2}\varepsilon \,\cosh \left( \lambda \,\varepsilon \right) {\mathrm{e}^{\lambda \,\varepsilon }}- \zeta \, \lambda \,\sinh \left( \lambda \,\varepsilon \right) {\mathrm{e}^{\lambda \, \varepsilon }}+{\lambda }^{3}\varepsilon \,\cosh \left( \lambda \,\varepsilon \right) {\mathrm{e}^{\lambda \,\varepsilon }}-{\lambda }^{2}\sinh \left( \lambda \,\varepsilon \right) {\mathrm{e}^{\lambda \,\varepsilon }}+3\,{\lambda }^{ 2}\varepsilon \,\cosh \left( \lambda \,\varepsilon \right) {\mathrm{e}^{\lambda \, \varepsilon }}-3\,\lambda \,\sinh \left( \lambda \,\varepsilon \right) {\mathrm{e} ^{\lambda \,\varepsilon }}\\ +3\,{\mathrm{e}^{\lambda \,\varepsilon }}\varepsilon \,\cosh \left( \lambda \,\varepsilon \right) \lambda -3\,{\mathrm{e}^{\lambda \, \varepsilon }}\sinh \left( \lambda \,\varepsilon \right) \end{array}}{\begin{array}{l}- \zeta \,{\lambda }^{3}\varepsilon \,\cosh \left( \lambda \right) { \mathrm{e}^{\lambda }}+ \zeta \,{\lambda }^{2}\varepsilon \, \sinh \left( \lambda \right) {\mathrm{e}^{\lambda }}+ \zeta \,{\lambda }^{3}\varepsilon \,\cosh \left( \lambda \,\varepsilon \right) {\mathrm{e}^{\lambda \,\varepsilon }}+ \zeta \,{ \lambda }^{2}\varepsilon \,\cosh \left( \lambda \,\varepsilon \right) {\mathrm{e}^ {\lambda \,\varepsilon }}+\sinh \left( \lambda \right) {\lambda }^{2}{ \mathrm{e}^{\lambda }}-{\lambda }^{2}\sinh \left( \lambda \,\varepsilon \right) {\mathrm{e}^{\lambda \,\varepsilon }}\\ -\zeta \,{ \lambda }^{2}\sinh \left( \lambda \,\varepsilon \right) {\mathrm{e}^{\lambda \, \varepsilon }}- \zeta \,{\lambda }^{2}\cosh \left( \lambda \right) {\mathrm{e}^{\lambda }}+ \zeta \,\lambda \,\sinh \left( \lambda \right) {\mathrm{e}^{\lambda }}+{\lambda }^{3}\varepsilon \, \sinh \left( \lambda \right) {\mathrm{e}^{\lambda }}-\zeta \,\lambda \,\sinh \left( \lambda \,\varepsilon \right) {\mathrm{e}^{ \lambda \,\varepsilon }}+{\lambda }^{3}\varepsilon \,\cosh \left( \lambda \, \varepsilon \right) {\mathrm{e}^{\lambda \,\varepsilon }}\end{array}}} \end{aligned}$$
$$\begin{aligned} \delta _{1}^{\prime }= & \, E= \frac{\begin{array}{l} -\zeta \,{\mathrm{e}^{-\lambda \,\varepsilon }}{\lambda }^{3} \varepsilon \,\cosh \left( \lambda \right) + \zeta \,{ \mathrm{e}^{-\lambda \,\varepsilon }}{\lambda }^{2}\varepsilon \,\sinh \left( \lambda \right) - \zeta \,{\mathrm{e}^{-\lambda \,\varepsilon }}{\lambda }^{2}\cosh \left( \lambda \right) + \zeta \, {\mathrm{e}^{-\lambda \,\varepsilon }}\lambda \,\sinh \left( \lambda \right) +{ \mathrm{e}^{-\lambda }}{\lambda }^{3}\varepsilon \,\cosh \left( \lambda \, \varepsilon \right) \\ -{\mathrm{e}^{-\lambda }}{\lambda }^{2}\sinh \left( \lambda \,\varepsilon \right) +3\,{\mathrm{e}^{-\lambda }}{\lambda }^{2} \varepsilon \,\cosh \left( \lambda \,\varepsilon \right) -3\,{\mathrm{e}^{- \lambda }}\lambda \,\sinh \left( \lambda \,\varepsilon \right) +3\,{\mathrm{e}^ {-\lambda }}\lambda \,\varepsilon \,\cosh \left( \lambda \,\varepsilon \right) - 3\,{\mathrm{e}^{-\lambda }}\sinh \left( \lambda \,\varepsilon \right) + \zeta \,{\mathrm{e}^{-\lambda }}{\lambda }^{3}\varepsilon \, \cosh \left( \lambda \,\varepsilon \right) \\ -\zeta \,{ \mathrm{e}^{-\lambda }}{\lambda }^{2}\sinh \left( \lambda \,\varepsilon \right) + \zeta \,{\mathrm{e}^{-\lambda }}{\lambda }^{2} \varepsilon \,\cosh \left( \lambda \,\varepsilon \right) - \zeta \,{\mathrm{e}^{-\lambda }}\lambda \,\sinh \left( \lambda \,\varepsilon \right) +{\mathrm{e}^{-\lambda \,\varepsilon }}{\lambda }^{3}\varepsilon \,\sinh \left( \lambda \right) +3\,{\mathrm{e}^{-\lambda \,\varepsilon }}\lambda \, \varepsilon \,\sinh \left( \lambda \right) \\ -3\,{\mathrm{e}^{-\lambda \, \varepsilon }}{\lambda }^{2}\varepsilon \,\cosh \left( \lambda \right) +{ \mathrm{e}^{-\lambda \,\varepsilon }}\sinh \left( \lambda \right) {\lambda }^{2 }+3\,{\mathrm{e}^{-\lambda \,\varepsilon }}\sinh \left( \lambda \right) -3\,{ \mathrm{e}^{-\lambda \,\varepsilon }}\lambda \,\cosh \left( \lambda \right) \end{array}}{\begin{array}{l} -{l}^{3} \zeta \,{\mathrm{e}^{-\lambda \,\varepsilon }}{ \lambda }^{3}\varepsilon \,\cosh \left( \lambda \right) +{l}^{3} \zeta \,{\mathrm{e}^{-\lambda \,\varepsilon }}{\lambda }^{2}\varepsilon \, \sinh \left( \lambda \right) +{l}^{3} \zeta \,{\mathrm{e} ^{-\lambda }}{\lambda }^{3}\varepsilon \,\cosh \left( \lambda \,\varepsilon \right) +{l}^{3} \zeta \,{\mathrm{e}^{-\lambda }}{\lambda }^{2}\varepsilon \,\cosh \left( \lambda \,\varepsilon \right) + \zeta \,{\mathrm{e}^{-\lambda \,\varepsilon }}{\lambda }^{3}\varepsilon \,\cosh \left( \lambda \right) \\ - \zeta \,{\mathrm{e}^{-\lambda \, \varepsilon }}{\lambda }^{2}\varepsilon \,\sinh \left( \lambda \right) - \zeta \,{\mathrm{e}^{-\lambda }}{\lambda }^{3}\varepsilon \, \cosh \left( \lambda \,\varepsilon \right) - \zeta \,{ \mathrm{e}^{-\lambda }}{\lambda }^{2}\varepsilon \,\cosh \left( \lambda \, \varepsilon \right) +{\mathrm{e}^{-\lambda }}{\lambda }^{2}\sinh \left( \lambda \,\varepsilon \right) -{\mathrm{e}^{-\lambda \,\varepsilon }}\sinh \left( \lambda \right) {\lambda }^{2}+ \zeta \,{\mathrm{e}^{- \lambda \,\varepsilon }}{\lambda }^{2}\cosh \left( \lambda \right) \\ - \zeta \,{\mathrm{e}^{-\lambda \,\varepsilon }}\lambda \,\sinh \left( \lambda \right) -{\mathrm{e}^{-\lambda }}{\lambda }^{3}\varepsilon \,\cosh \left( \lambda \,\varepsilon \right) + \zeta \,{\mathrm{e}^{ -\lambda }}{\lambda }^{2}\sinh \left( \lambda \,\varepsilon \right) + \zeta \,{\mathrm{e}^{-\lambda }}\lambda \,\sinh \left( \lambda \,\varepsilon \right) -{\mathrm{e}^{-\lambda \,\varepsilon }}{\lambda }^{3} \varepsilon \,\sinh \left( \lambda \right) -{\mathrm{e}^{-\lambda }}{l}^{3}{ \lambda }^{2}\sinh \left( \lambda \,\varepsilon \right) \\ -3\,{\mathrm{e}^{- \lambda }}{l}^{3}\lambda \,\sinh \left( \lambda \,\varepsilon \right) +{ \mathrm{e}^{-\lambda \,\varepsilon }}{l}^{3}\sinh \left( \lambda \right) { \lambda }^{2}-3\,{\mathrm{e}^{-\lambda \,\varepsilon }}{l}^{3}\lambda \,\cosh \left( \lambda \right) -{l}^{3} \zeta \,{\mathrm{e}^{- \lambda \,\varepsilon }}{\lambda }^{2}\cosh \left( \lambda \right) +{l}^{3} \zeta \,{\mathrm{e}^{-\lambda \,\varepsilon }}\lambda \,\sinh \left( \lambda \right) \\ -{l}^{3} \zeta \,{\mathrm{e}^{- \lambda }}{\lambda }^{2}\sinh \left( \lambda \,\varepsilon \right) -{l}^{3} \zeta \,{\mathrm{e}^{-\lambda }}\lambda \,\sinh \left( \lambda \,\varepsilon \right) +{\mathrm{e}^{-\lambda }}{l}^{3}{\lambda }^{3} \varepsilon \,\cosh \left( \lambda \,\varepsilon \right) +3\,{\mathrm{e}^{- \lambda }}{l}^{3}{\lambda }^{2}\varepsilon \,\cosh \left( \lambda \,\varepsilon \right) +3\,{\mathrm{e}^{-\lambda }}{l}^{3}\lambda \,\varepsilon \,\cosh \left( \lambda \,\varepsilon \right) \\ +{\mathrm{e}^{-\lambda \,\varepsilon }}{l}^{ 3}{\lambda }^{3}\varepsilon \,\sinh \left( \lambda \right) +3\,{\mathrm{e}^{- \lambda \,\varepsilon }}{l}^{3}\lambda \,\varepsilon \,\sinh \left( \lambda \right) -3\,{\mathrm{e}^{-\lambda \,\varepsilon }}{l}^{3}{\lambda }^{2} \varepsilon \,\cosh \left( \lambda \right) -3\,{\mathrm{e}^{-\lambda }}{l}^{3} \sinh \left( \lambda \,\varepsilon \right) +3\,{\mathrm{e}^{-\lambda \, \varepsilon }}{l}^{3}\sinh \left( \lambda \right) \end{array}} \end{aligned}$$

and the coefficients M1, M2 are given as follows

$$\begin{aligned} M1= & \, -\zeta \lambda ^2\left[ \left( -18\,{\lambda }^{4}{l}^{6}+6\, \zeta \,{\lambda }^{3}-60 \,{\lambda }^{2}{l}^{6}+15\,{\lambda }^{2}{l}^{3}+4\, \zeta \,{\lambda }^{5}+18\,{\lambda }^{4}{l}^{5}+72\,{\lambda }^{2}{l} ^{5}+4\, \zeta \,{\lambda }^{5}{l}^{6}-9\, \zeta \,{\lambda }^{5}{l}^{5}+9\, \zeta \,{ \lambda }^{3}{l}^{5}+45\, \zeta \,{\lambda }^{3}{l}^{3}- 9\, \zeta \,{\lambda }^{5}l\right. \right. \\& \left. +\,10\, \zeta \,{\lambda }^{5}{l}^{3}-60\, \zeta \,{\lambda }^{3}{l}^{ 6} \right) +\left( 2\,{\lambda }^{3}-18\, \zeta \,{\lambda }^{4}-12\, \zeta \,{\lambda }^{2}-8\, \zeta \,{ \lambda }^{6}-10\,{\lambda }^{3}{l}^{3}+24\,{\lambda }^{5}{l}^{6}+3\,{ \lambda }^{5}{l}^{3}-27\,{\lambda }^{5}{l}^{5}+120\,\lambda \,{l}^{6}-30 \,\lambda \,{l}^{3}\right. \\& +\,116\,{\lambda }^{3}{l}^{6}-144\,\lambda \,{l}^{5}-144 \,{\lambda }^{3}{l}^{5}-90\, \zeta \,{\lambda }^{4}{l}^{ 3}+120\, \zeta \,{\lambda }^{2}{l}^{6}+72\, \zeta \,{\lambda }^{4}{l}^{6}+18\, \zeta \,{ \lambda }^{6}{l}^{5}+18\, \zeta \,{\lambda }^{6}l-20\, \zeta \,{\lambda }^{6}{l}^{3}-8\, \zeta \,{\lambda }^{6}{l}^{6}+18\, \zeta \,{\lambda } ^{4}{l}^{5}\\& -\,\left. 18\, \zeta \,{\lambda }^{2}{l}^{5}-90\, \zeta \,{\lambda }^{2}{l}^{3}+18\, \zeta \,{\lambda }^{4}l \right) \tanh (\lambda ) +\left( -12\, \zeta \,{\lambda }^{5}{l}^{6}-27\, \zeta \,{\lambda }^{5}{l}^{5}-9\, \zeta \,{\lambda }^ {3}{l}^{5}-18\, \zeta \,{\lambda }^{5}l+80\, \zeta \,{\lambda }^{3}{l}^{3}+45\, \zeta \,{ \lambda }^{5}{l}^{3}-76\, \zeta \,{\lambda }^{3}{l}^{6}\right. \\& -\, 2\,{\lambda }^{2}+15\,{l}^{3}-2\,{\lambda }^{4}-60\,{l}^{6}+72\,{l}^{5}- 44\,{\lambda }^{4}{l}^{6}+14\, \zeta \,{\lambda }^{3}-98 \,{\lambda }^{2}{l}^{6}+10\,{\lambda }^{2}{l}^{3}+12\, \zeta \,{\lambda }^{5}+63\,{\lambda }^{4}{l}^{5}+126\,{\lambda }^{2}{l }^{5}+45\, \zeta \,\lambda \,{l}^{3}\\& -\,9\, \zeta \,{\lambda }^{3}l+9\, \zeta \,\lambda \,{l}^{5} +6\, \zeta \,\lambda -6\,{\lambda }^{6}{l}^{6}+9\,{ \lambda }^{6}{l}^{5}-3\,{\lambda }^{6}{l}^{3}+4\, \zeta \,{\lambda }^{7}-8\,{\lambda }^{4}{l}^{3}-9\, \zeta \,{ \lambda }^{7}{l}^{5}-9\, \zeta \,{\lambda }^{7}l+10\, \zeta \,{\lambda }^{7}{l}^{3}\\& +\,\left. \left. 4\, \zeta \,{\lambda }^{7}{l}^{6}-60\, \zeta \,\lambda \, {l}^{6} \right) \tanh ^2(\lambda ) \right] \\ M2= & \, \left( -4\,{\zeta }^{2}{\lambda }^{7}-6\,{\zeta }^{2}{\lambda }^{5}-87\, \zeta \,{\lambda }^{4}{l}^{5}-18\, \zeta \,{\lambda }^{6}{l}^{5}-90\,{\zeta }^{2}{\lambda }^{3}{l}^{5}- 90\, \zeta \,{\lambda }^{2}{l}^{5}+4\,{\zeta }^{2}{ \lambda }^{7}{l}^{5}-54\,{\zeta }^{2}{\lambda }^{5}{l}^{5} \right) +\left( -8\,{\zeta }^{2}{\lambda }^{8}{l}^{5}+62\,{\zeta }^{2}{\lambda }^{6}{l}^ {5}\right. \\& +\,198\,{\zeta }^{2}{\lambda }^{4}{l}^{5}+24\, \zeta \,{\lambda }^{7}{l}^{5}+234\, \zeta \,{\lambda }^{3}{l}^ {5}+145\, \zeta \,{\lambda }^{5}{l}^{5}+180\,{\zeta }^{ 2}{l}^{5}{\lambda }^{2}+180\, \zeta \,\lambda \,{l}^{5}+ 18\,{\zeta }^{2}{\lambda }^{6}+12\,{\zeta }^{2}{\lambda }^{4}-2\, \zeta \,{\lambda }^{5}-30\,{\lambda }^{2}{l}^{5}\\& -\,\left. 9\,{ \lambda }^{4}{l}^{5}+8\,{\zeta }^{2}{\lambda }^{8} \right) \tanh (\lambda )+ \left( 4\,{\zeta }^{2}{\lambda }^{9}{l}^{5}-6\, \zeta \,{ \lambda }^{8}{l}^{5}-137\, \zeta \,{\lambda }^{4}{l}^{5} -52\, \zeta \,{\lambda }^{6}{l}^{5}-90\,{\zeta }^{2}{l} ^{5}\lambda -144\,{\zeta }^{2}{\lambda }^{3}{l}^{5}-86\,{\zeta }^{2}{ \lambda }^{5}{l}^{5}-8\,{\zeta }^{2}{\lambda }^{7}{l}^{5}\right. \\& \left. -\,147\, \zeta \,{\lambda }^{2}{l}^{5}-4\,{\zeta }^{2}{\lambda }^{9}-14 \,{\zeta }^{2}{\lambda }^{5}-12\,{\zeta }^{2}{\lambda }^{7}+2\, \zeta \,{\lambda }^{6}-6\,{\zeta }^{2}{\lambda }^{3}-90\, \zeta \,{l}^{5}+30\,\lambda \,{l}^{5}+3\,{\lambda }^{5} {l}^{5}+19\,{\lambda }^{3}{l}^{5}+2\, \zeta \,{\lambda } ^{4} \right) \tanh ^2(\lambda ) \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prakash, J., Sekhar, G.P.R. Slow motion of a porous spherical particle with a rigid core in a spherical fluid cavity. Meccanica 52, 91–105 (2017). https://doi.org/10.1007/s11012-016-0391-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-016-0391-5

Keywords

Mathematics Subject Classification

Navigation