Skip to main content
Log in

Analytical solution of the dynamic contact problem of anisotropic materials indented with a rigid wavy surface

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

This article establishes a dynamic wavy contact model of anisotropic materials subject to a rigid indenter, which moves at a constant speed. There is a gap between the indenter and the substrate prior to deformation. The Galilean transformation is introduced to make the equations of motion tractable. Applying the generalized Almansi’s theorem, general solutions for anisotropic governing equations are given for three root cases by using potential theory. The stated problem is reduced to dual series equations, which are solved exactly. Displacement and stress are given in the infinite series forms. Numerical tests have been done to examine the convergence of the infinite series. It is found that maximum magnitudes of the stress can be relieved by adjusting the relative velocity and the elastic constant ratio.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Tita V, Caliri Júnior MF (2012) Numerical simulation of anisotropic polymeric foams. Lat Am J Solids Struct 9:259–279

    Article  Google Scholar 

  2. Ting TCT (1996) Anisotropic elasticity. Oxford University Press, New York

    MATH  Google Scholar 

  3. Lekhnitskii SG (1981) Theory of elasticity of an anisotropic body. MIR, Moscow

    MATH  Google Scholar 

  4. Stroh AN (1958) Dislocations and cracks in anisotropic elasticity. Philos Mag 3:625–646

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Stroh AN (1962) Steady-state problems in anisotropic elasticity. J Math Phys 41:77–103

    Article  MathSciNet  MATH  Google Scholar 

  6. Barber JR, Ting TCT (2007) Three-dimensional solutions for general anisotropy. J Mech Phys Solids 55:1993–2006

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Brock LM (2013) Transient Green’s function for the general anisotropic solid: an alternative form. J Appl Mech Trans ASME 80, Article no. 051019

  8. Kim DH, Kim JK, Hwang P (2000) Anisotropic tribological properties of the coating on a magnetic recording disk. Thin Solid Films 360:187–194

    Article  ADS  Google Scholar 

  9. Li X, Bhushan B (2002) A review of nanoindentation continuous stiffness measurement technique and its applications. Mater Charact 48:11–36

    Article  Google Scholar 

  10. VanLandingham MR (2003) Review of instrumented indentation. J Res Natl Inst Stand Technol 108:249–265

    Article  Google Scholar 

  11. Ge L, Kim NH, Bourne GR, Gregory Sawyer W (2009) Material property identification and sensitivity analysis using micro-indentation. J Tribol 131, Article no. 031402

  12. Willis JR (1966) Hertzian contact of anisotropic bodies. J Mech Phys Solids 14:163–176

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Vlassak JJ, Ciavarella M, Barber JR, Wang X (2003) The indentation modulus of elastically anisotropic materials for indenters of arbitrary shape. J Mech Phys Solids 51:1701–1721

    Article  ADS  MATH  Google Scholar 

  14. Clements DL, Ang WT (2006) On the indentation of an inhomogeneous anisotropic elastic material by multiple straight rigid punches. Eng Anal Bound Elem 30:284–291

    Article  MATH  Google Scholar 

  15. David L, Clements DL, Ang WT (2009) On some contact problems for inhomogeneous anisotropic elastic materials. Int J Eng Sci 47:1149–1162

    Article  MathSciNet  MATH  Google Scholar 

  16. Brock LM, Georgiadis HG (2001) An illustratio of sliding contact at any constant speed on highly elastic half-spaces. IMA J Appl Math 66:551–566

    Article  MathSciNet  MATH  Google Scholar 

  17. Borodich FM (1991) Integral characteristics of solutions of spatial problems on the dynamical impression of solid bodies in continuous media. J Appl Math Mech PMM 55:106–113

    Article  MathSciNet  MATH  Google Scholar 

  18. Borodich F (2000) Some contact problems of anisotropic elastodynamics: integral characteristics and exact solutions. Int J Solids Struct 37:3345–3373

    Article  MathSciNet  MATH  Google Scholar 

  19. Zhou YT, Lee KY (2013) Effects of the moving speed of a rigid stamp on contact behaviors of anisotropic materials based on real fundamental solutions. Meccanica 48:739–752

    Article  MathSciNet  MATH  Google Scholar 

  20. Zhou YT, Lee KY, Jang YH (2013) Explicit solution of the frictional contact problem of anisotropic materials indented by a moving stamp with a triangular or parabolic profile. ZAMP Z Angew Math Phys 64:831–861

    Article  MathSciNet  MATH  Google Scholar 

  21. Persson BNJ (2002) Adhesion between an elastic body and a randomly rough hard surface. Eur Phys J E 8:385–401

    Article  Google Scholar 

  22. Zhang W, Jin F, Zhang SL, Guo X (2014) Adhesion between elastic cylinders based on the double-Hertz model. J Appl Mech Trans ASME 81, Article no. 051008

  23. Ding HJ, Chen B, Liang J (1996) On the general solutions for coupled equation for piezoelectric media. Int J Solids Struct 33:2283–2298

    Article  Google Scholar 

  24. Sturla FA, Baber JR (1988) Thermal stresses due to a plane crack in general anisotropic material. J Appl Mech Trans ASME 55:372–376

    Article  Google Scholar 

  25. Payton RG (1964) An application of the dynamic Betti-Rayleigh reciprocal theorem to moving-point loads in elastic media. Q Appl Math 21:299–313

    MathSciNet  MATH  Google Scholar 

  26. Lothe J, Barnett DM (1976) On the existence of surface-wave solutions for anisotropic elastic half-spaces with free surface. J Appl Phys 47:428–433

    Article  ADS  Google Scholar 

  27. Barnett DM, Lothe J (1985) Free surface (Rayleigh) waves in anisotropic elastic half-spaces: the surface impedance method. Proc R Soc Lond Ser A 402:135–152

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Dundurs J, Tsai KC, Keer LM (1973) Contact between elastic bodies with wavy surfaces. J Elast 3:109–115

    Article  Google Scholar 

  29. Bezares J, Peng ZL, Asaro JR, Zhu Q (2011) Macromolecular structure and viscoelastic response of the organic framework of nacre in Haliotis rufescens: a perspective and overview. Theor Appl Mech 38:75–106

    Article  MATH  Google Scholar 

  30. Masaki N, Toru T, Noriyuki M (2007) Stress intensity factor analysis of a three-dimensional interface crack between dissimilar anisotropic materials. Eng Fract Mech 74:2481–2497

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tae-Won Kim.

Appendices

Appendix 1

  1. 1.

    Coefficients \( n_{m} \) \(\,(m = 0,1,2,3) \) appearing in Eq. (19)

$$ n_{0} = C_{55} C_{44} C_{33} - C_{33} C_{45}^{2} , $$
(67)
$$ \begin{aligned} n_{1} & = (C_{11} - C_{66} V^{2} )C_{44} C_{33} + C_{55} C_{66} (1 - V^{2} )C_{33} + C_{55} C_{44} (C_{55} - C_{66} V^{2} ) \\ & \quad - C_{55} (C_{36} + C_{45} )^{2} - 2C_{16} C_{45} C_{33} - C_{45}^{2} (C_{55} - C_{66} V^{2} ) \\ & \quad + 2C_{45} (C_{13} + C_{55} )(C_{36} + C_{45} ) - (C_{13} + C_{55} )^{2} C_{44} , \\ \end{aligned} $$
(68)
$$ \begin{aligned} n_{2} & = (C_{11} - C_{66} V^{2} )C_{66} (1 - V^{2} )C_{33} + (C_{11} - C_{66} V^{2} )C_{44} (C_{55} - C_{66} V^{2} ) \\ & \quad - (C_{11} - C_{66} V^{2} )(C_{36} + C_{45} )^{2} + C_{55} C_{66} (1 - V^{2} )(C_{55} - C_{66} V^{2} ) - C_{16}^{2} C_{33} \\ & \quad - 2C_{16} C_{45} (C_{55} - C_{66} V^{2} ) + 2C_{16} (C_{13} + C_{55} )(C_{36} + C_{45} ) \\ & \quad - (C_{13} + C_{55} )^{2} C_{66} (1 - V^{2} ), \\ \end{aligned} $$
(69)
$$ n_{3} = (C_{11} - C_{66} V^{2} )C_{66} (1 - V^{2} )(C_{55} - C_{66} V^{2} ) - C_{16}^{2} (C_{55} - C_{66} V^{2} ). $$
(70)
  1. 2.

    Known functions \( \gamma_{mn}\,(m,n = 1,2,3) \) appearing in Eq. (22)

$$ \begin{aligned} \gamma_{11} & = (C_{36} + C_{45} )C_{16} - (C_{13} + C_{55} )C_{66} (1 - V^{2} ), \\ \gamma_{12} & = (C_{36} + C_{45} )C_{45} - (C_{13} + C_{55} )C_{44} , \\ \end{aligned} $$
(71)
$$ \begin{aligned} \gamma_{21} & = - (C_{36} + C_{45} )(C_{11} - C_{66} V^{2} ) + (C_{13} + C_{55} )C_{16} , \\ \gamma_{22} & = - (C_{36} + C_{45} )C_{55} + (C_{13} + C_{55} )C_{45} , \\ \end{aligned} $$
(72)
$$ \begin{aligned} \gamma_{31} & = (C_{11} - C_{66} V^{2} )C_{66} (1 - V^{2} ) - C_{16}^{2} , \\ \gamma_{32} & = (C_{11} - C_{66} V^{2} )C_{44} + C_{55} C_{66} (1 - V^{2} ) - 2C_{16} C_{45} , \\ \gamma_{33} & = C_{55} C_{44} - C_{45}^{2} . \\ \end{aligned} $$
(73)
  1. 3.

    Known functions \( \tau_{i}^{(xz)} \) and \( \tau_{i}^{(yz)} \) \(\,(i = 1,2,3) \) appearing in Eqs. (43) and (44)

$$ \begin{aligned} \tau_{i}^{(xz)} & = - \left( {C_{55} \upsilon_{i} + C_{45} \varpi_{i1} \upsilon_{i} + C_{55} \varpi_{i2} } \right), \\ \tau_{i}^{(yz)} & = - \left( {C_{45} \upsilon_{i} + C_{44} \varpi_{i1} \upsilon_{i} + C_{45} \varpi_{i2} } \right). \\ \end{aligned} $$
(74)
  1. 4.

    Known functions \( \kappa_{a} \) and \( \kappa_{b} \) appearing in Eq. (47)

$$ \kappa_{a} = \frac{1}{{2\left( {o_{a} \varpi_{12} + o_{b} \varpi_{22} + \varpi_{32} } \right)}}, $$
(75)
$$ \kappa_{b} = o_{a} \tau_{1}^{(zz)} + o_{b} \tau_{2}^{(zz)} + \tau_{3}^{(zz)} . $$
(76)
  1. 5.

    Known functions \( \tau_{i}^{(xx)}\,(i = 1,2,3) \) appearing in Eq. (61)

$$ \tau_{i}^{(xx)} = - C_{11} - C_{16} \varpi_{i1} + C_{13} \varpi_{i2} \upsilon_{i} . $$
(77)
  1. 6.

    Known functions \( U_{i}\,(i = 1,2,3) \) appearing in Eq. (63)

$$ U_{1} = - \sum\limits_{i = 1}^{3} {\lambdabar_{i} } , $$
(78)
$$ U_{2} = - \sum\limits_{i = 1}^{3} {\varpi_{i1} \lambdabar_{i} } , $$
(79)
$$ U_{3} = \sum\limits_{i = 1}^{3} {\varpi_{i2} \lambdabar_{i} } \upsilon_{i}. $$
(80)

.

  1. 7.

    Known functions \( \sigma_{0} \), \( \Upsilon^{(u)} \), \( \Upsilon^{(v)} \), \( \Upsilon^{(w)} \), \( \Upsilon^{(xx)} \), \( \Upsilon^{(zz)} \), \( \Upsilon^{(xz)} \) and \( \Upsilon^{(yz)} \) appearing in Eq. (64)

$$ \sigma_{0} = - \sum\limits_{i = 1}^{3} {\tau_{i}^{(xx)} \lambdabar_{i} } , $$
(81)
$$ \Upsilon^{(u)} = \frac{{o_{a} e^{{z_{1} }} + o_{b} e^{{z_{2} }} + e^{{z_{3} }} }}{{\kappa_{b} }}, $$
(82)
$$ \Upsilon^{(v)} = \frac{{o_{a} \varpi_{11} e^{{z_{1} }} + o_{b} \varpi_{21} e^{{z_{2} }} + \varpi_{31} e^{{z_{3} }} }}{{\kappa_{b} }}, $$
(83)
$$ \Upsilon^{(w)} = - \frac{{o_{a} \varpi_{12} e^{{z_{1} }} + o_{b} \varpi_{22} e^{{z_{2} }} + \varpi_{32} e^{{z_{3} }} }}{{\kappa_{b} }}, $$
(84)
$$ \Upsilon^{(xx)} = - \frac{{o_{a} \tau_{1}^{(xx)} e^{{z_{1} }} + o_{b} \tau_{2}^{(xx)} e^{{z_{2} }} + \tau_{3}^{(xx)} e^{{z_{3} }} }}{{\kappa_{b} }}, $$
(85)
$$ \Upsilon^{(zz)} = - \frac{{o_{a} \tau_{1}^{(zz)} e^{{z_{1} }} + o_{b} \tau_{2}^{(zz)} e^{{z_{2} }} + \tau_{3}^{(zz)} e^{{z_{3} }} }}{{\kappa_{b} }}, $$
(86)
$$ \Upsilon^{(xz)} = - \frac{{o_{a} \tau_{1}^{(xz)} e^{{z_{1} }} + o_{b} \tau_{2}^{(xz)} e^{{z_{2} }} + \tau_{3}^{(xz)} e^{{z_{3} }} }}{{\kappa_{b} }}, $$
(87)
$$ \Upsilon^{(yz)} = - \frac{{o_{a} \tau_{1}^{(yz)} e^{{z_{1} }} + o_{b} \tau_{2}^{(yz)} e^{{z_{2} }} + \tau_{3}^{(yz)} e^{{z_{3} }} }}{{\kappa_{b} }}. $$
(88)

Appendix 2

Refe [23] presented the following generalized Almansi’s theorem and its proof: Let \( R \) be a region of the (x, y, z)-space such that a straight line parallel to the z-axis intersects the boundary of \( R \) at no more than two points. Let \( F_{n} (x,y,z) \) be a solution of

$$ \mathop \Pi \limits_{i = 1}^{n} \nabla_{i}^{2} F_{n} = \nabla_{1}^{2} \nabla_{2}^{2} \cdots \nabla_{n - 1}^{2} \nabla_{n}^{2} F_{n} = 0\quad in\,R, $$
(89)

where

$$ \nabla_{i}^{2} = \Lambda + c_{i}^{2} D^{2} ,\quad D = \frac{\partial }{\partial z}, $$
(90)

and the \( c_{i} \) are constants. Then \( F_{n} \) admits the representation

$$ F_{n} (x,y,z) = F_{n - 1} (x,y,z) + z^{m} F^{(n)} (x,y,z), $$
(91)

where \( F_{n - 1} \) and \( F^{(n)} \), respectively, satisfy

$$ \mathop \Pi \limits_{i = 1}^{n} \nabla_{i}^{2} F_{n - 1} = 0, $$
(92)
$$ \mathop \Pi \limits_{i = 1}^{n} \nabla_{i}^{2} F^{(n)} = 0, $$
(93)

and \( m(0 \le m \le n - 1) \) is the number of the coefficients \( c_{i}^{2}\,(i = 1,2, \ldots ,n - 1) \) which are equal to \( c_{n}^{2} \).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, YT., Kim, TW. Analytical solution of the dynamic contact problem of anisotropic materials indented with a rigid wavy surface. Meccanica 52, 7–19 (2017). https://doi.org/10.1007/s11012-016-0386-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-016-0386-2

Keywords

Navigation