Skip to main content
Log in

A comprehensive analysis of hardening/softening behaviour of shearable planar beams with whatever axial boundary constraint

  • Nonlinear Dynamics, Identification and Monitoring of Structures
  • Published:
Meccanica Aims and scope Submit manuscript

A Commentary to this article was published on 18 January 2017

Abstract

The free nonlinear oscillations of a planar elastic beam are investigated based on a comprehensive asymptotic treatment of the exact equations of motion. With the aim of investigating the behaviour also for low slenderness, shear deformations and rotational inertia are taken into account. Attention is payed to the influence of the geometrical and mechanical parameters, and of the boundary conditions in changing the nonlinear behaviour from softening to hardening. An axial linear spring is added to one end of the beam, and it is shown how the behaviour changes qualitatively on passing from the hinged-hinged (commonly hardening) to the hinged-supported (commonly softening) case. Some interesting, and partially unexpected, results are obtained also for values of the slenderness moderately low but still in the realm of practical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Atluri S (1973) Nonlinear vibrations of hinged beam including nonlinear inertia effects. ASME J Appl Mech 40:121–126

    MATH  Google Scholar 

  2. Luongo A, Rega G, Vestroni F (1986) On nonlinear dynamics of planar shear indeformable beams. ASME J Appl Mech 53:619–624

    MATH  Google Scholar 

  3. Kauderer H (1958) Nichtlinear mechanik. Springer, Berlin. ISBN: 978-3-642-92734-8

    MATH  Google Scholar 

  4. Crespo da Silva MRM (1988) Nonlinear flexural-flexural-torsional-extensional dynamics of beams. II. Response analysis. Int J Solids Struct 24:1235–1242

    MATH  Google Scholar 

  5. Mettler E (1962) Dynamic buckling. In: Flugge (ed) Handbook of engineering mechanics. McGraw-Hill, New York. ISBN: 0070213925

    Google Scholar 

  6. Lacarbonara W, Yabuno H (2006) Refined models of elastic beams undergoing large in-plane motions: theory and experiments. Int J Solids Struct 43:5066–5084

    MATH  Google Scholar 

  7. Lacarbonara W (2013) Nonlinear structural mechanics. Springer, New York. ISBN: 978-1-4419-1276-3

    MATH  Google Scholar 

  8. Simo JC, Vu-Quoc L (1991) A geometrically-exact beam model incorporating shear and torsion warping deformation. Int J Solids Struct 27:371–393

    MATH  Google Scholar 

  9. Nayfeh AH, Pai PF (2004) Linear and nonlinear structural mechanics. Wiley, New York. ISBN: 978-0-471-59356-0

    MATH  Google Scholar 

  10. Cao DQ, Tucker RW (2008) Nonlinear dynamics of elastic rods using the Cosserat theory: modelling and simulation. Int J Solids Struct 45:460–477

    MATH  Google Scholar 

  11. Stoykov S, Ribeiro P (2010) Nonlinear forced vibrations and static deformations of 3D beams with rectangular cross section: the influence of warping, shear deformation and longitudinal displacements. Int J Mech Sci 52:1505–1521

    Google Scholar 

  12. Luongo A, Zulli D (2013) Mathematical models of beams and cables. Wiley-ISTE, New York. ISBN: 978-1-84821-421-7

    MATH  Google Scholar 

  13. Formica G, Arena A, Lacarbonara W, Dankowicz H (2013) Coupling FEM with parameter continuation for analysis and bifurcations of periodic responses in nonlinear structures. ASME J Comput Nonlinear Dyn 8:021013

    Google Scholar 

  14. Lenci S, Rega G (2015) Nonlinear free vibrations of planar elastic beams: a unified treatment of geometrical and mechanical effects, IUTAM Procedia (in press)

  15. Nayfeh A (2004) Introduction to perturbation techniques. Wiley-VCH, Weinheim. ISBN: 0-978-471-31013-6

    MATH  Google Scholar 

  16. Kovacic I, Rand R (2013) About a class of nonlinear oscillators with amplitude-independent frequency. Nonlinear Dyn 74:455–465

    MathSciNet  MATH  Google Scholar 

  17. Timoshenko S (1955) Vibrations problems in engineering. Wolfenden Press, New York. ISBN: 1406774650

    Google Scholar 

  18. Huang TC (1961) The effect of rotatory inertia and of shear deformation on the frequency and normal mode equations of uniform beams with simple end conditions. ASME J Appl Mech 28:579–584

    MathSciNet  MATH  Google Scholar 

  19. Lenci S, Rega G (2015) Asymptotic analysis of axial-transversal coupling in the free nonlinear vibrations of Timoshenko beams with arbitrary slenderness and axial boundary conditions (submitted)

  20. Clementi F, Demeio L, Mazzilli CEN, Lenci S (2015) Nonlinearvibrations of non-uniform beams by the MTS asymptotic expansionmethod, Contin Mech Thermodyn. doi:10.1007/s00161-014-0368-3

    MATH  Google Scholar 

  21. Srinil N, Rega G (2007) The effects of kinematic condensation on internally resonant forced vibrations of shallow horizontal cables. Int J Non-Linear Mech 42:180–195

    MATH  Google Scholar 

  22. Lagomarsino S, Penna A, Galasco A, Cattari S (2013) TREMURI program: an equivalent frame model for the nonlinear seismic analysis of masonry buildings. Eng Struct 56:1787–1799

    Google Scholar 

Download references

Acknowledgments

This work has been partially supported by the Italian Ministry of Education, University and Research (MIUR) by the PRIN funded program 2010/11 N.2010MBJK5B “Dynamics, stability and control of flexible structures”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Lenci.

Appendix

Appendix

The nonlinear frequency correction \(\omega _2\) is given by [14]:

$$\begin{aligned} \omega _2 = U_a^2 \frac{c_1 \omega _{2a} + c_2 \sin \left( \frac{2L \omega _0 \sqrt{\rho B}}{\sqrt{E A}} \right) \omega _{2b} + \omega _{2c} }{\omega _{2d}}, \end{aligned}$$
(43)

where the expressions of \(\omega _{2a}\), \(\omega _{2b}\), \(\omega _{2c}\) and \(\omega _{2d}\) are reported in the following. Note that \(\omega _{2d}\) does not vanish for the considered values of \(\omega _0\).

Using the dimensional expressions in (45)–(48) it is possible to rewrite (43) in the form

$$\begin{aligned} \omega _2 = U_a^2 \frac{1}{L^4} \sqrt{\frac{EJ}{\rho A}} \,\, \frac{c_1 \bar{\omega }_{2a} + c_2 \sin \left( \frac{2 \bar{\omega }_0 \sqrt{x}}{l} \right) \bar{\omega }_{2b} + \bar{\omega }_{2c} }{\bar{\omega }_{2d}}, \end{aligned}$$
(44)

from which one gets (29), with the associated expression of the dimensionless quantity \(\bar{\omega }_2\).

$$\begin{aligned} \omega _{2a}&= {} 32 EA \pi ^2 n^2 \left( EA \pi ^2 n^2 - \omega _0^2 L^2 \rho B\right) \nonumber \\&\quad\times \left[ EA L^2 - EJ \pi ^2 n^2 \alpha _1^2 +GA L^2 \left( \alpha _1^2-1\right) \right] = \frac{(EJ)^3}{L^4} \bar{\omega }_{2a}, \nonumber \\ \bar{\omega }_{2a}&= {} - 32 \, l^2 \pi ^2 n^2 \left( \pi ^2 n^2 \alpha _1^2 - \alpha _1^2 l^2 z + l^2 z - l^2\right) \left( \pi ^2 n^2 l^2 - x \bar{\omega }_0^2\right), \end{aligned}$$
(45)
$$\begin{aligned} \omega _{2b}&= {} 16 EA \pi ^2 n^2 GA L^2 \left( \alpha _1^2-1\right) \left( 2 \rho B \omega _0^2 L^2- EA \pi ^2 n^2\right) \nonumber \\&+ 16 (EA)^2 \pi ^2 n^2 \left( EJ \alpha _1^2 \pi ^4 n^4 - EA \pi ^2 n^2 L^2 + 2 \rho B \omega _0^2 L^4\right) = \frac{(EJ)^3}{L^4} \bar{\omega }_{2b}, \nonumber \\ \bar{\omega }_{2b}&= {} 16 \, l^4 \pi ^2 n^2 \left[ \pi ^4 n^4 \alpha _1^2 - \left( \alpha _1^2 z - z + 1 \right) \left( \pi ^2 n^2 l^2 - 2 x \bar{\omega }_0^2\right) \right], \end{aligned}$$
(46)
$$\begin{aligned} \omega _{2c}&= {} 6 \pi ^6 n^6 L^2 (EA)^3 \nonumber \\&\quad- \pi ^4 n^4 (EA)^2 \left[ -6 \pi ^2 n^2 L^2 \left( \alpha _1^2-1\right) GA + 6 \pi ^4 n^4 \alpha _1^2 EJ + 7 \rho B \omega _0^2 L^4 \right] \nonumber \\&\quad+ EA \left\{ \pi ^6 n^6 \alpha _1^2 \left[ -6 \pi ^2 n^2 \left( \alpha _1-1\right) GA + 5 L^2 \rho B \omega _0^2 \right] EJ \right. \nonumber \\&\left.\quad -\,\pi ^4 n^4 L^2 GA \left( \alpha _1-1\right) \left[ 6 n^2 \pi ^2 \left( \alpha _1^2-1\right) GA + \omega _0^2 L^2 \rho B \left( 7 \alpha _1+9\right) \right] \right\} \nonumber \\&\quad+\,4 \rho B \left( \alpha _1-1\right) L^2 GA \pi ^4 n^4 \omega _0^2 \left[ \left( \alpha _1^2-1\right) L^2 GA + n^2 \pi ^2 \alpha _1^2 EJ \right] = \frac{(EJ)^3}{L^4} \bar{\omega }_{2c}, \nonumber \\ \bar{\omega }_{2c}&= {} - \pi ^4 n^4 l^2 \{ 6 \pi ^2 n^2 \left( \alpha _1^3 z^2 - \alpha _1^2 z^2 - \alpha _1^2 z - \alpha _1 z^2 + z^2 + z - 1 \right) l^4 \nonumber \\&\quad+ \left[ - x \left( 4 \alpha _1^3 z^2 - 4 \alpha _1^2 z^2 - 7 \alpha _1^2 z - 4 \alpha _1 z^2 - 2 \alpha _1 z + 4 z^2 + 9 z - 7 \right) \bar{\omega }_0^2 \right. \nonumber \\&\left.\quad +\,6 \pi ^4 n^4 \alpha _1^2 \left( \alpha _1 z - z + 1 \right) \right] l^2 - \pi ^2 n^2 \alpha _1^2 x \bar{\omega }_0^2 \left( 4 \alpha _1 z - 4 z + 5 \right) \}, \end{aligned}$$
(47)
$$\begin{aligned} \omega _{2d}&= {} 64 EA L^4 \omega _0 \left( EA \pi ^2 n^2 - \omega _0^2 L^2 \rho B\right) \left( \rho A L^2 + \pi ^2 n^2 \alpha _1^2 \rho J\right) = (EJ)^2 \sqrt{EJ \rho A} \,\, \bar{\omega }_{2d}, \nonumber \\ \bar{\omega }_{2d}&= {} 64 \, \bar{\omega }_0 \left( \pi ^2 n^2 l^2 - x \bar{\omega }_0^2\right) \left( \pi ^2 n^2 \alpha _1^2 y + l^2\right). \end{aligned}$$
(48)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lenci, S., Clementi, F. & Rega, G. A comprehensive analysis of hardening/softening behaviour of shearable planar beams with whatever axial boundary constraint. Meccanica 51, 2589–2606 (2016). https://doi.org/10.1007/s11012-016-0374-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-016-0374-6

Keywords

Navigation