Skip to main content
Log in

Micromorphic first-order shear deformable plate element

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

Based on the micromorphic theory (MMT), a size-dependent plate element is developed for the finite element analysis of materials with considering the microstructure effect. To this end, the strain energy and constitutive relations of MMT are generally written first. The relations are represented in the matrix form so as to obtain the finite element matrices. Then, based on the first-order shear deformation theory, the matricized formulation is reduced for the case of a plate model, and the micromorphic plate element is formulated accordingly. In order to show the efficiency of the developed element, it is utilized to address the bending problem of micromorphic plates subject to various kinds of boundary conditions. In the numerical results, the effects of small scale and other parameters on the bending behavior of micromorphic plates are studied. It is revealed that the present finite element formulation can be efficiently used in the analysis of small-scale structures owing to considering micro-deformation and micro-rotation degrees of freedom of material particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Mindlin RD, Tiersten HF (1962) Effects of couple-stresses in linear elasticity. Arch Ration Mech Anal 11:415–448

    Article  MathSciNet  MATH  Google Scholar 

  2. Koiter WT (1964) Couple stresses in the theory of elasticity. Proc Koninklijke Nederlandse Akademie van Wetenschappen (B) 67:17–44

    MathSciNet  MATH  Google Scholar 

  3. Yang F, Chong ACM, Lam DCC, Tong P (2002) Couple stress based strain gradient theory for elasticity. Int J Solids Struct 39:2731–2743

    Article  MATH  Google Scholar 

  4. Mindlin RD (1964) Micro-structure in linear elasticity. Arch Ration Mech Anal 6:51–78

    MathSciNet  MATH  Google Scholar 

  5. Mindlin RD (1965) Second gradient of strain and surface tension in linear elasticity. Int J Solids Struct 1:417–438

    Article  Google Scholar 

  6. Lam DCC, Yang F, Chong ACM, Wang J, Tong P (2003) Experiments and theory in strain gradient elasticity. J Mech Phys Solids 51:1477–1508

    Article  ADS  MATH  Google Scholar 

  7. Gao X-L, Park SK, Ma HM (2009) Analytical solution for a pressurized thick-walled spherical shell based on a simplified strain gradient elasticity theory. Math Mech Solids 14:747–758

    Article  MathSciNet  MATH  Google Scholar 

  8. Akgöz B, Civalek Ö (2011) Application of strain gradient elasticity theory for buckling analysis of protein microtubules. Curr Appl Phys 11:1133–1138

    Article  ADS  Google Scholar 

  9. Papargyri-Beskou S, Tsinopoulos SV, Beskos DE (2012) Wave propagation in and free vibrations of gradient elastic circular cylindrical shells. Acta Mech 223:1789–1807

    Article  MathSciNet  MATH  Google Scholar 

  10. Zhou X, Wang L (2012) Vibration and stability of micro-scale cylindrical shells conveying fluid based on modified couple stress theory. Micro Nano Lett 7:679–684

    Article  Google Scholar 

  11. Şimşek M, Reddy JN (2013) Bending and vibration of functionally graded microbeams using a new higher order beam theory and the modified couple stress theory. Int J Eng Sci 64:37–53

    Article  MathSciNet  Google Scholar 

  12. Akgöz B, Civalek Ö (2013) Buckling analysis of functionally graded microbeams based on the strain gradient theory. Acta Mech 224:2185–2201

    Article  MathSciNet  MATH  Google Scholar 

  13. Lazopoulos AK, Lazopoulos KA, Palassopoulos G (2014) Nonlinear bending and buckling for strain gradient elastic beams. Appl Math Model 38:253–262

    Article  MathSciNet  Google Scholar 

  14. Gholami R, Darvizeh A, Ansari R, Hosseinzadeh M (2014) Size-dependent axial buckling analysis of functionally graded circular cylindrical microshells based on the modified strain gradient elasticity theory. Meccanica 49:1679–1695

    Article  MathSciNet  MATH  Google Scholar 

  15. Eringen AC, Suhubi E (1964) Nonlinear theory of simple micro-elastic solids—I. Int J Eng Sci 2:189–203

    Article  MathSciNet  MATH  Google Scholar 

  16. Suhubi E, Eringen AC (1964) Nonlinear theory of micro-elastic solids—II. Int J Eng Sci 2:389–404

    Article  MathSciNet  MATH  Google Scholar 

  17. Eringen AC (1967) Theory of micropolar plates. Zeitschrift für angewandte Mathematik und Physik ZAMP 18:12–30

    Article  ADS  Google Scholar 

  18. Eringen AC (1967) Linear theory of micropolar viscoelasticity. Int J Eng Sci 5:191–204

    Article  MATH  Google Scholar 

  19. Nowacki, W., 1970, “Theory of micropolar elasticity,” Springer

  20. Capriz G (1989) Continua with microstructure. Springer, New York

    Book  MATH  Google Scholar 

  21. Eringen AC (1999) Microcontinuum field theories I: foundations and solids. Springer, New York

    Book  MATH  Google Scholar 

  22. Eringen AC (2001) Microcontinuum field theories II: fluent media. Springer, New York

    MATH  Google Scholar 

  23. Steinmann P (1994) Theorie endlicher mikropolarer Elasto-Plastizität. ZAMM 74:T245–T247

    Google Scholar 

  24. Grammenoudis P, Tsakmakis C (2005) Finite element implementationof large deformation micropolar plasticity exhibiting isotropic and kinematic hardening effects. Int J Numer Meth Eng 62:1691–1720

    Article  MATH  Google Scholar 

  25. Bigoni D, Drugan WJ (2007) “Analytical derivation of Cosserat moduli via homogenization of heterogeneous elastic materials”, ASME. J Appl Mech 74:741–753

    Article  MathSciNet  Google Scholar 

  26. Grammenoudis P, Tsakmakis C (2009) Isotropic hardening in micropolar plasticity. Arch Appl Mech 79:323–334

    Article  MATH  Google Scholar 

  27. Aslan O, Cordero NM, Gaubert A, Forest S (2011) Micromorphic approach to single crystal plasticity and damage. Int J Eng Sci 49:1311–1325

    Article  MathSciNet  Google Scholar 

  28. Oliver J, Mora DF, Huespe AE, Weyler R (2012) A micromorphic model for steel fiber reinforced concrete. Int J Solids Struct 49:2990–3007

    Article  Google Scholar 

  29. Cao W, Yang X, Tian X (2012) Anti-plane problems of piezoelectric material with a micro-void or micro-inclusion based on micromorphic electroelastic theory. Int J Solids Struct 49:3185–3200

    Article  Google Scholar 

  30. Kvasov R, Steinberg L (2013) Numerical modeling of bending of micropolar plates. Thin Walled Struct 69:67–78

    Article  Google Scholar 

  31. Bhattacharyya A, Mukhopadhyay B (2013) Study of linear isotropic micro-polar plate in an asymptotic approach. Comput Math Appl 66:1047–1057

    Article  MathSciNet  Google Scholar 

  32. Cao WZ, Yang XH, Tian XB (2014) Numerical evaluation of size effect in piezoelectric micro-beam with linear micromorphic electroelastic theory. J Mech 30:467–476

    Article  Google Scholar 

  33. Wang Y, Sun C, Sun X, Hinkley J, Odegard GM, Gates TS (2003) 2-D nano-scale finite element analysis of a polymer field. Compos Sci Technol 63:1581–1590

    Article  Google Scholar 

  34. Chen H, Li L, Yu W (2009) Multiscale finite element analysis of bulk nano-particle fabrication by a mechanical method. J Mater Proc Technol 209:4243–4247

    Article  Google Scholar 

  35. Roy S, Darque-Ceretti E, Felder E, Raynal F, Bispo I (2010) Experimental analysis and finite element modelling of nano-scratch test applied on 40–120 nm SiCN thin films deposited on Cu/Si substrate. Thin Solid Films 518:3859–3865

    Article  ADS  Google Scholar 

  36. Shaat M, Mahmoud FF, Alieldin SS, Alshorbagy AE (2013) Finite element analysis of functionally graded nano-scale films. Finite Elem Anal Des 74:41–52

    Article  MathSciNet  MATH  Google Scholar 

  37. Ansari R, Faghih Shojaei M, Rouhi H (2015) Small-scale Timoshenko beam element. Eur J Mech A Solids 53:19–33

    Article  MathSciNet  Google Scholar 

  38. Ansari R, Faghih Shojaei M, Mohammadi V, Rouhi H, Bazdid-Vahdati M (2015) Triangular mindlin microplate element. Comput Meth Appl Mech Eng 295:56–76

    Article  MathSciNet  Google Scholar 

  39. Ansari R, Faghih Shojaei M, Ebrahimi F, Rouhi H (2015) A non-classical Timoshenko beam element for the Postbuckling analysis of microbeams based on Mindlin’s strain gradient theory. Arch Appl Mech 85:937–953

    Article  Google Scholar 

  40. Ansari R, Faghih Shojaei M, Ebrahimi F, Rouhi H, Bazdid-Vahdati M (2015) A novel size-dependent microbeam element based on Mindlin’s strain gradient theory. Eng Comput. doi:10.1007/s00366-015-0406-1

  41. Lakes R (1986) Experimental microelasticity of two porous solids. Int J Solids Struct 22:55–63

    Article  Google Scholar 

  42. Smith AC (1968) Inequalities between the constants of a linear micro-elastic solid. Int J Eng Sci 6:65–74

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Ansari.

Appendix: Material constants of the micromorphic model

Appendix: Material constants of the micromorphic model

$$ \begin{array}{*{20}l} {c_{1} = \lambda ,} \hfill & {c_{2} = \mu ,} \hfill & {b_{1} = \eta - \tau ,} \hfill & {b_{2} = \kappa - \sigma , } \hfill & {b_{3} = \chi - \sigma , } \hfill & {d_{1} = \tau ,} \hfill & {d_{2} = \sigma } \hfill \\ \end{array} $$
(52)
$$ {\mathbf{C}} = \left[ {\begin{array}{*{20}c} {{\tilde{\mathbf{C}}}_{1} } & {\mathbf{0}} \\ {\mathbf{0}} & {{\mathbf{C}}_{2} } \\ \end{array} } \right]_{5 \times 5} , {\mathbf{B}} = \left[ {\begin{array}{*{20}c} {{\tilde{\mathbf{B}}}_{1} } & {\mathbf{0}} \\ {\mathbf{0}} & {{\mathbf{B}}_{2} } \\ \end{array} } \right]_{8 \times 8} , {\mathbf{D}} = \left[ {\begin{array}{*{20}c} {{\tilde{\mathbf{D}}}_{1} } & {\mathbf{0}} \\ {\mathbf{0}} & {{\mathbf{D}}_{2} } \\ \end{array} } \right]_{5 \times 8} , {\mathbf{A}} = \left[ {\begin{array}{*{20}c} {{\mathbf{A}}_{1} } & {\mathbf{0}} & {\mathbf{0}} \\ {\mathbf{0}} & {{\mathbf{A}}_{2} } & {\mathbf{0}} \\ {\mathbf{0}} & {\mathbf{0}} & {{\mathbf{A}}_{3} } \\ \end{array} } \right]_{16 \times 16} $$
(53)
$$ \begin{aligned} {\tilde{\mathbf{C}}}_{1} = \left[ {\begin{array}{*{20}c} {\lambda_{1} + 2\mu } & {\lambda_{1} } \\ {\lambda_{1} } & {\lambda_{1} + 2\mu } \\ \end{array} } \right] \hfill \\ \lambda_{1} = \lambda + \left( {\lambda + 2\mu } \right)\alpha_{1}^{2} + \alpha_{2} \left( {\tau + \left( {\eta + \kappa - 2\sigma - \tau + \chi } \right)\alpha_{2} } \right) + \alpha_{1} \left( {2\lambda + \left( {2\sigma + \tau } \right)\alpha_{2} } \right) \hfill \\ \lambda_{1} = \lambda + \left( {\lambda + 2\mu } \right)a_{1}^{2} + \left( {\eta + \kappa - 2\sigma - \tau + \chi } \right)a_{2}^{2} + 2\tau a_{2} + a_{1} \left( {2\lambda + 2\left( {2\sigma + \tau } \right)a_{2} } \right) \hfill \\ \end{aligned} $$
(54)
$$ \begin{aligned} {\tilde{\mathbf{B}}}_{1} = \left[ {\begin{array}{*{20}c} {\lambda_{2} + \kappa + \chi - 2\sigma } & {\lambda_{2} } \\ {\lambda_{2} } & {\lambda_{2} + \kappa + \chi - 2\sigma } \\ \end{array} } \right] \hfill \\ \lambda_{2} = \eta - \tau + \left( {\lambda + 2\mu } \right)\beta_{1}^{2} + \left( {2\eta - \tau } \right)\beta_{2} + \left( {\eta + \kappa + \chi } \right)\beta_{2}^{2} \hfill \\ \lambda_{2} = \eta - \tau + \left( {\lambda + 2\mu } \right)b_{1}^{2} + \left( {2\eta - 2\tau } \right)b_{2} + \left( {\eta + \kappa + \chi - \tau - 2\sigma } \right)b_{2}^{2} + 2b_{1} \left( {\tau + \left( {2\sigma + \tau } \right)b_{2} } \right) \hfill \\ \end{aligned} $$
(55)
$$ \begin{aligned} {\tilde{\mathbf{D}}}_{1} = \left[ {\begin{array}{*{20}c} {\lambda_{3} + 2\sigma } & {\lambda_{3} } \\ {\lambda_{3} } & {\lambda_{3} + 2\sigma } \\ \end{array} } \right] \hfill \\ \lambda_{3} = \tau + 2\lambda \beta_{1} + 2\left( {\eta - \tau } \right)\alpha_{2} + \left( {\tau + \left( {2\eta + 2\kappa - 2\sigma - \tau + 2\chi } \right)\alpha_{2} } \right)\beta_{2} + \alpha_{1} \left( {\tau + 2\left( {\lambda + 2\mu } \right)\beta_{1} + \left( {2\sigma + \tau } \right)\beta_{2} } \right) \hfill \\ \lambda_{3} = \tau + \lambda b_{1} + \tau b_{2} + a_{1} \left( {\tau + \left( {\lambda + 2\mu } \right)b_{1} + \left( {2\sigma + \tau } \right)b_{2} } \right) + a_{2} \left( {\eta - \tau + \left( {2\sigma + \tau } \right)b_{1} + \left( {\eta + \kappa - 2\sigma - \tau + \chi } \right)b_{2} } \right) \hfill \\ \lambda_{3} = 2\left( {\lambda + 2\mu } \right)\alpha_{1} \beta_{1} + 2\left( {\tau + 2\sigma } \right)\left( {\alpha_{1} \beta_{2} + \alpha_{2} \beta_{1} } \right) + 2\left( {\chi + \eta + \kappa - \tau - 2\sigma } \right)\alpha_{2} \beta_{2} + 2\tau \alpha_{1} + 2\left( {\eta - \tau } \right)\alpha_{2} + 2\lambda \beta_{1} + 2\tau \beta_{2} + 4\sigma + 2\tau \hfill \\ \end{aligned} $$
(56)
$$ \begin{aligned} {\mathbf{A}}_{1} = {\mathbf{I}}_{2} \otimes \left[ {\begin{array}{*{20}c} a & {{\overline{\mathbf{a}}}} \\ {{\overline{\mathbf{a}}}^{\text{T}} } & {{\overline{\mathbf{A}}}} \\ \end{array} } \right] \hfill \\ a = 2\left( {a_{1} + a_{2} + a_{5} + a_{8} } \right) + a_{3} + a_{4} + a_{6} + a_{7} + a_{9} + a_{10} + a_{11} \hfill \\ {\overline{\mathbf{a}}} = \left[ {\begin{array}{*{20}c} {a_{1} + a_{2} + a_{3} } & {a_{1} + a_{4} + a_{5} } & {a_{2} + a_{5} + a_{6} } & {a_{1} + a_{2} + a_{3} } \\ \end{array} } \right] \hfill \\ {\overline{\mathbf{a}}} = \left[ {\begin{array}{*{20}c} {a_{1} + a_{2} + a_{3} } & {a_{1} + a_{4} + a_{5} } & {a_{2} + a_{5} + a_{6} } \\ \end{array} } \right] \hfill \\ {\overline{\mathbf{A}}} = \left[ {\begin{array}{*{20}c} {a_{3} + a_{7} + a_{10} } & {a_{1} + a_{8} + a_{11} } & {a_{2} + a_{8} + a_{9} } & {a_{3} } \\ {} & {a_{4} + a_{7} + \tau_{9} } & {a_{5} + a_{8} + a_{10} } & {a_{1} } \\ {} & {} & {a_{6} + a_{7} + a_{11} } & {a_{2} } \\ {sym.} & {} & {} & {a_{3} + a_{7} + a_{10} } \\ \end{array} } \right] \hfill \\ {\overline{\mathbf{A}}} = \left[ {\begin{array}{*{20}c} {a_{3} + a_{7} + a_{10} } & {a_{1} + a_{8} + A_{11} } & {a_{2} + a_{8} + a_{9} } \\ {} & {a_{4} + a_{7} + a_{9} } & {a_{5} + a_{8} + a_{10} } \\ {sym.} & {} & {a_{6} + a_{7} + a_{11} } \\ \end{array} } \right] \hfill \\ {\mathbf{A}}_{2} = \left[ {\begin{array}{*{20}c} {a_{4} + a_{7} + a_{9} } & {a_{5} + a_{8} + a_{10} } & {a_{4} } & {a_{5} } \\ {} & {a_{6} + a_{7} + a_{11} } & {a_{5} } & {a_{6} } \\ {} & {} & {a_{4} + a_{7} + a_{9} } & {a_{5} + a_{8} + a_{10} } \\ {sym.} & {} & {} & {a_{6} + a_{7} + a_{11} } \\ \end{array} } \right] \hfill \\ {\mathbf{A}}_{3} = \left[ {\begin{array}{*{20}c} {a_{7} } & {a_{8} } & {a_{10} } & {a_{11} } \\ {} & {a_{7} } & {a_{9} } & {a_{10} } \\ {} & {} & {a_{7} } & {a_{8} } \\ {sym.} & {} & {} & {a_{7} } \\ \end{array} } \right] \hfill \\ \end{aligned} $$
(57)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ansari, R., Bazdid-Vahdati, M., Shakouri, A. et al. Micromorphic first-order shear deformable plate element. Meccanica 51, 1797–1809 (2016). https://doi.org/10.1007/s11012-015-0325-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-015-0325-7

Keywords

Navigation