Skip to main content
Log in

Non-similar solution of the forced convection of laminar gaseous slip flow over a flat plate with viscous dissipation: linear stability analysis for local similar solution

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

Forced convection of laminar nearly incompressible gaseous slip flow over an isothermal flat plate at low Mach number with viscous dissipation is considered. The non-similar solutions of hydrodynamical and thermal boundary layers equations with velocity-slip and temperature-jump at the wall are obtained numerically by using the implicit finite difference method. The effects of the modified boundary layer Knudsen number, i.e., the slip parameter and the Eckert number on the heat transfer characteristics are presented graphically and discussed. The numerical results show that for small Eckert number, the slip parameter does not have significant effect on the local heat transfer in the continuum and in slip flow regimes while for the large Eckert numbers, its effect depends that the plate being colder or warmer than the free stream. In addition, we develop a linear stability analysis, based on the traditional normal-mode approach, by assuming local parallel flow approximation, to study the effect of slip parameter on the stability of local similar solution. This approach leads to the usual Orr–Sommerfeld equation which governs the perturbation stream function satisfying slip boundary condition. This equation is solved numerically by using a powerful method based on spectral Chebyshev collocation. For no slip flow, the results for the eigenvalues and the corresponding wave numbers are found in excellent agreement with previous available numerical calculations that supports the validity of our results. Furthermore, the neutral curves of stability in the Reynolds-wave number plane are obtained, for the first time, for the boundary layer in the slip flow regime. The results show that the effect of slip parameter is to increase the critical Reynolds numbers for instability and to decrease the most unstable wave numbers. It is concluded that the rarefaction has a stabilizing effect on the Blasius flow and suggests that the transition to turbulence could be delayed in the slip flow regime.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

a :

Parameter appears in Eq. (21), \( a = \frac{{2 - \sigma_{T} }}{{\sigma_{T} }}\,\frac{{\sigma_{M} }}{{2 - \sigma_{M} }}\,\frac{2\gamma }{\gamma + 1} \)

b :

Dimensionless adiabatic wall temperature

\( \widehat{c} \) :

Complex wave velocity, \( \widehat{c} = \widehat{c}_{r} + i\,\widehat{c}_{i} \), Eq. (29)

\( c \) :

Dimensionless complex wave velocity, \( c = c_{r} + i\,c_{i} \), Eq. (33)

\( Cp \) :

Specific heat at constant pressure (J Kg−1 K−1)

Ec :

Eckert number, \( Ec = U_{\infty }^{2} /C_{p} (T_{w} - T_{\infty } ) \)

\( f \) :

Dimensionless stream function, Eq. (12)

h :

Heat transfer coefficient (W m−2 K−1)

k :

Thermal conductivity (W m−1 K−1)

K :

Local slip parameter, \( K = \lambda \frac{{2 - \sigma_{M} }}{{\sigma_{M} }}\sqrt {\frac{{U_{\infty } }}{\nu x}} \)

L :

Length of the plate (m)

\( Nu_{x} \) :

Local Nusselt number, Eq. (25)

Pr :

Prandtl number, \( Pr = \nu /\alpha \)

\( Re_{x} \) :

Local Reynolds number, \( Re = U_{\infty } x/\nu \)

\( Re_{\delta } \) :

Local Reynolds number, \( Re_{\delta } = U_{\infty } \delta (x)/\nu = \sqrt {Re_{x} } \)

\( Re_{{\delta}^*} \) :

Local Reynolds number, \( Re_{{\delta}^*} = U_{\infty } \delta^{*} (x)/\nu \)

\( Tw \) :

Temperature at the surface of the plate, wall temperature (K)

\( \left. T \right|_{w} \) :

Fluid temperature at the wall, Eq. (5) (K)

T:

Temperature of the fluid (K)

\( T_{\infty } \) :

Temperature of the ambient fluid (K)

\( \left. u \right|_{w} \) :

The local wall slip velocity, Eq. (4) (m s−1)

\( u^{*} \) :

The dimensionless x-component of the velocity, Eq. (13)

\( u \) :

The x-component of the velocity (m s−1)

\( U_{\infty } \) :

Free stream velocity (m s−1)

\( v^{*} \) :

The dimensionless y-component of the velocity, Eq. (14)

v :

The y-component of the velocity (m s−1)

x, y :

Distance along and normal to the wedge (m)

\( \alpha_{t} \) :

Thermal diffusivity, \( \alpha_{t} = k/\rho C_{p} \) (m2 s−1)

\( \widehat{\alpha } \) :

Wave number (m−1)

α :

Dimensionless wave number, Eq. (33)

β :

Ratio of boundary layers thickness, \( \beta = \delta^{*} /\delta = \int_{0}^{\infty } {(1 - f\prime )d\eta } \)

δ :

Boundary layer thickness

\( \delta^{*} \) :

Displacement thickness

γ :

Ratio of specific heats, \( \gamma = C_{p} /C_{v} \)

ϕ :

Dimensionless complex amplitude of the perturbation of stream function Eq. (33)

σ :

Accommodation coefficient

λ :

Mean free path (m)

ψ :

Stream function (m2 s−1)

\( \widehat{\psi } \) :

Complex amplitude of the perturbation of stream function, Eq. (26)

\( \varPsi_{B} \) :

Base flow of stream function (m2 s−1)

η :

Similarity variable

Θ :

Dimensionless fluid temperature, Eq. (12)

ν :

Kinematic viscosity (m2 s−1)

References

  1. Karniadakis G, Beskok A, Aluru N (2005) Microflows and nanoflows: fundamentals and simulation. Springer, New York

    Google Scholar 

  2. Blasius H (1908) Grenzschichten in flussigkeiten mit kleiner reibung. Z Math Phys 56:1–37

    Google Scholar 

  3. Polhausen K (1921) Zur naherungsweisen integration der differentialgleichungen der laminaren reibungsschicht. Z Angew Math Mech 1:252–268

    Article  Google Scholar 

  4. Weyl H (1942) On the differential equations of the simplest boundary-layer problem. Ann Math 43:381–407

    Article  MATH  MathSciNet  Google Scholar 

  5. Magyari E (2008) The moving plate thermometer. Int J Therm Sci 47:1436–1441

    Article  Google Scholar 

  6. Weyburne DW (2008) Approximate heat transfer coefficients based on variable thermophysical properties for laminar flow over a uniformly heated flat plate. Heat Mass Transf 44:805–813

    Article  ADS  Google Scholar 

  7. Cortell R (2005) Numerical solutions of the classical blasius flat-plate problem. Appl Math Comput 170:706–710

    Article  MATH  MathSciNet  Google Scholar 

  8. Ahammad Basha D, Prasanna S, Venkashan SP (2012) Mixed convection from an upward facing horizontal flat plate: effect of conduction and radiation. Heat Mass Transf 48:2125–2131

    Article  ADS  Google Scholar 

  9. He JH (2003) A simple perturbation approach to blasius equation. Appl Math Comput 140:217–222

    Article  MATH  MathSciNet  Google Scholar 

  10. Aziz A (2009) A similarity solution for laminar thermal boundary layer over a flat plate with a convective surface boundary condition. Commun Nonlinear Sci Numer Simul 14:1064–1068

    Article  MathSciNet  ADS  Google Scholar 

  11. Makinde OD, Sibanda P (2008) Magnetohydrodynamic mixed convective flow and heat and mass transfer past a vertical plate in a porous medium with constant wall suction. ASME J Heat Transf 130:112602

    Article  Google Scholar 

  12. Cortell R (2008) Similarity solutions for flow and heat transfer of a quiescent fluid over a non-linearly stretching surface. J Mater Process Technol 2003:176–183

    Google Scholar 

  13. Rogers DF (1992) Laminar flow analysis. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  14. Martin MJ, Boyd ID (2001) Blasius boundary layer solution with slip flow conditions. In: Bartel TJ and Gallis MA (eds) Rarefied gas dynamics: 22nd international symposium. American Institute of Physics, Sydney, Australia, pp 518–523

  15. Anderson HI (2002) Slip flow past a stretching surface. Acta Mech 158:121–125

    Article  Google Scholar 

  16. Fang T, Lee CF (2005) A moving wall boundary layer flow of a slightly rarefied gas free stream over a moving flat plate. Appl Math Lett 18:487–495

    Article  MATH  MathSciNet  Google Scholar 

  17. Vedantam NK, Parthasarathy RN (2006) Effects of slip on the flow characteristics of a laminar flat plate boundary layer. ASME J Fluids Eng Summer Meet 1:1551–1560. doi:10.1115/FEDSM2006-98151

  18. Aziz A (2010) Hydromagnetic and thermal slip flow boundary layers over a flat plate with constant heat flux boundary condition. Commun Nonlinear Sci Numer Simul 15:573–580

    Article  MathSciNet  ADS  Google Scholar 

  19. Noghrehabadi AR, Pourrajab R, Ghalambaz M (2012) Effect of partial slip boundary condition on the flow and heat transfer of nanofluids past stretching sheet prescribed constant wall temperature. Int J Therm Sci 54:253–261

    Article  Google Scholar 

  20. Bhattacharyya K, Mukhopadhyay S, Layek GC (2011) MHD boundary layer slip flow and heat transfer over a flat plate. Chin Phys Lett 28(2):024701–024704

    Article  Google Scholar 

  21. Rahman MM (2011) Locally similar solutions for hydromagnetic and thermal slip flow boundary layers over a flat plate with variable fluid properties and convective surface boundary condition. Meccanica 46:1127–1143

    Article  MATH  MathSciNet  Google Scholar 

  22. Das K (2012) Impact of thermal radiation on MHD slip flow over a flat plate with variable fluid properties. Heat Mass Transf 48:767–778

    Article  ADS  Google Scholar 

  23. Yazdi MH, Shahrir A, Hashim I, Sopian K (2011) Effects of viscous dissipation on the slip mhd flow and heat transfer past a permeable surface with convective boundary conditions. Energies 4:2273–2294

    Article  Google Scholar 

  24. Cao K, Baker J (2009) Slip effects on mixed convective flow and heat transfer from a vertical plate. Int J Heat Mass Transf 52:3829–3841

    Article  MATH  Google Scholar 

  25. Sparrow EM, Quack H, Boerner CJ (1970) Local non similarity boundary layer solutions. Am Inst Aeronaut Astronaut J 8:1936–1942

    Article  MATH  Google Scholar 

  26. Sparrow EM, Yu HS (1971) Local non similarity thermal boundary layer solutions. ASME J Heat Transf 93:328–334

    Article  Google Scholar 

  27. Lahjomri J, Oubarra A (2013) Hydrodynamic and thermal characteristics of laminar slip flow over a horizontal isothermal flat plate. ASME J Heat Transf 135(2):021704-1–021704-9

    Article  Google Scholar 

  28. Martin MJ, Boyd ID (2006) Momentum and heat transfer in a laminar boundary layer with slip flow. J Thermophys Heat Transfer 20(4):710–719

    Article  Google Scholar 

  29. Martin MJ, Boyd ID (2010) Falkner-Skan flow over a wedge with slip boundary conditions. J Thermophys Heat Transf 24(2):263–270

    Article  Google Scholar 

  30. Martin MJ, Cai C, Boyd ID (2012) Slip flow in magnetohydrodynamic boundary layer. Am Inst Aeronaut Astronaut J 3295:1–7

    Google Scholar 

  31. Tollmien W (1929) Über die entstehung der turbulenz. Nachr Ges Wiss Göttingen: 21–24, English translation NACA TM 609, 1931

  32. Schlichting H (1933) Berechnung der anfachung kleiner störungen bei der plattenströmung. Z Angew Math Mech 13:171–174

    Article  MATH  Google Scholar 

  33. Schubauer GB, Skramstad HK (1947) Laminar boundary layer oscillations and the stability of laminar flow. J Aeronaut Sci 14:69–78

    Article  Google Scholar 

  34. Jordinson R (1971) Spectrum of eigenvalues of the Orr–Sommerfeld equation for Blasius flow. Phys Fluids 14:2536

    Article  ADS  Google Scholar 

  35. Mack LM (1976) A numerical study of the temporal eigenvalue spectrum of the Blasius boundary layer. J Fluid Mech 73(3):497–520

    Article  MATH  ADS  Google Scholar 

  36. Van Stijn THL, Van de Vooren AI (1980) An accurate method for solving the Orr–Sommerfeld equation. J Eng Math 14(1):17–26

  37. Theofilis V (1994) The discrete temporal eigenvalue spectrum of the generalised Hiemenz flow as solution of the Orr–Sommerfeld equation. J Eng Math 28(3):241–259

    Article  MATH  MathSciNet  Google Scholar 

  38. Danabasoglu G, Biringen S (1990) A Chebyshev matrix method for the spatial modes of the Orr–Sommerfeld equation. Int J Numer Meth Fluids 11(7):1033–1037

    Article  MATH  Google Scholar 

  39. Canuto C, Quarteroni A, Hussaini MY, Zang TA (2007) Spectral methods: evolution to complex geometries and applications to fluid dynamics. Springer, New York

    Google Scholar 

  40. He Q, Wang XP (2008) The effect of the boundary slip on the stability of shear flow. J Appl Math Mech Zamm 88(9):729–734

    Article  MATH  Google Scholar 

  41. Driscoll TA, Bornemann F, Trefethen LN (2008) The Chebop system for automatic solution of differential equations. BIT Numer Math 48:701–723

    Article  MATH  MathSciNet  Google Scholar 

  42. Schlichting H (1979) Boundary layer theory, 7th edn. McGraw-Hill, New York

    MATH  Google Scholar 

  43. Schaaf SA and Talbot L (1959) Handbook of supersonic aerodynamics. Section 16: mechanics of rarefied gases, NAVORD report 1488, 5. Edited by the Johns Hopkins University, Maryland

  44. Bertolotti FP, Herbert T, Spalart PR (1992) Linear and nonlinear stability of the Blasius boundary layer. J Fluid Mech 242:441–474

    Article  MATH  MathSciNet  ADS  Google Scholar 

  45. Trefethen LN (2000) Spectral methods in matlab. SIAM, Philadelphia

    Book  MATH  Google Scholar 

  46. Herbert T (1997) Parabolized stability equations. Annu Rev Fluid Mech 29(1):245–283

    Article  MathSciNet  ADS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the numerical analysis team of Oxford University for providing us their numerical solvers Chebfun and Chebop. We would also like to thank the anonymous Reviewers whose insightful comments have considerably improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elhoucine Essaghir.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Essaghir, E., Haddout, Y., Oubarra, A. et al. Non-similar solution of the forced convection of laminar gaseous slip flow over a flat plate with viscous dissipation: linear stability analysis for local similar solution. Meccanica 51, 99–115 (2016). https://doi.org/10.1007/s11012-015-0204-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-015-0204-2

Keywords

Navigation