Skip to main content
Log in

An overview of geometrical parameters of surface texturing for piston/cylinder assembly and mechanical seals

  • Asperity contacts & lubrication aspects
  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

Surface texturing has been effectively used to improve tribological performance of sliding surfaces. Reduction in friction, increase in hydrodynamic load carrying capacity, reduction in wear and increase in fluid film stiffness are few examples of the benefits that can be obtained by surface texturing. In order to obtain these benefits, several researchers have investigated the effects of surface texturing geometrical parameters on the performance of different applications. If these geometrical parameters are not optimized for each application, they may have detrimental effects on their performance. These geometrical parameters in case of micro dimples include depth, diameter, depth to diameter ratio, shape and density of dimples. In this paper, the author reviews the effects of these geometrical parameters on the performance of two applications piston ring/cylinder assembly and mechanical seals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Mourier L et al (2010) Lubrication mechanisms with laser-surface-textured surfaces in elastohydrodynamic regime. Proc Inst Mech Eng J 224(J8):697–711

    Article  Google Scholar 

  2. Checo HM et al (2014) Moving textures: simulation of a ring sliding on a textured liner. Tribol Int 72:131–142

    Article  Google Scholar 

  3. Tomanik E (2013) Modelling the hydrodynamic support of cylinder bore and piston rings with laser textured surfaces. Tribol Int 59:90–96

    Article  Google Scholar 

  4. Zhan J, Yang M (2012) Investigation on dimples distribution angle in laser texturing of cylinder–piston ring system. Tribol Trans 55(5):693–697

    Article  Google Scholar 

  5. Gadeschi GB, Backhaus K, Knoll G (2012) Numerical analysis of laser-textured piston-rings in the hydrodynamic lubrication regime. J Tribol 134(4):041702

    Article  Google Scholar 

  6. Etsion I, Sher E (2009) Improving fuel efficiency with laser surface textured piston rings. Tribol Int 42(4):542–547

    Article  Google Scholar 

  7. Caciu C, Decenciere E, Jeulin D (2008) Parametric optimization of periodic textured surfaces for friction reduction in combustion engines. Tribol Trans 51(4):533–541

    Article  Google Scholar 

  8. Abboud JH et al (2007) Laser surface treatments of iron-based substrates for automotive application. J Mater Process Technol 182(1–3):427–431

    Article  Google Scholar 

  9. Ryk G, Etsion I (2006) Testing piston rings with partial laser surface texturing for friction reduction. Wear 261(7–8):792–796

    Article  Google Scholar 

  10. Etsion I, Halperin G, Becker E (2006) The effect of various surface treatments on piston pin scuffing resistance. Wear 261(7–8):785–791

    Article  Google Scholar 

  11. Bolander NW, Sadeghi F (2006) Surface modification for piston ring and liner. In: Snidle RW, Evans HP (eds) IUTAM symposium on elastohydrodynamics and micro-elastohydrodynamics, vol 134, pp 271–283

  12. Kligerman Y, Etsion I, Shinkarenko A (2005) Improving tribological performance of piston rings by partial surface texturing. J Tribol 127(3):632–638

    Article  Google Scholar 

  13. Ryk G, Kligerman Y, Etsion I (2002) Experimental investigation of laser surface texturing for reciprocating automotive components. Tribol Trans 45(4):444–449

    Article  Google Scholar 

  14. Ronen A, Etsion I, Kligerman Y (2001) Friction-reducing surface-texturing in reciprocating automotive components. Tribol Trans 44(3):359–366

    Article  Google Scholar 

  15. Chen C-Y et al (2012) Microstructure and lubricating property of ultra-fast laser pulse textured silicon carbide seals. Appl Phys A 107(2):345–350

    Article  ADS  Google Scholar 

  16. Bogdan A (2012) Mechanical seals with sliding surface texture—model fluid flow and some aspects of the laser forming of the texture. In: Martsynkovskyy V, Zahorulko A (eds) Xiiith international scientific and engineering conference hermetic sealing, vibration reliability and ecological safety of pump and compressor machinery-Hervicon-2011, pp 51–62

  17. Kligerman Y, Shinkarenko A (2011) The effect of tapered edges on lubrication regimes in surface-textured elastomer seals. Tribol Int 44(12):2059–2066

    Article  Google Scholar 

  18. Wan Y, Xiong D-S (2008) The effect of laser surface texturing on frictional performance of face seal. J Mater Process Technol 197(1–3):96–100

    Article  Google Scholar 

  19. Etsion I, Halperin G (2002) A laser surface textured hydrostatic mechanical seal. Tribol Trans 45(3):430–434

    Article  Google Scholar 

  20. Etsion I, Kligerman Y, Halperin G (1999) Analytical and experimental investigation of laser-textured mechanical seal faces. Tribol Trans 42(3):511–516

    Article  Google Scholar 

  21. Qiu M et al (2014) The accuracy of the compressible Reynolds equation for predicting the local pressure in gas-lubricated textured parallel slider bearings. Tribol Int 72:83–89

    Article  Google Scholar 

  22. Qiu M, Minson BR, Raeymaekers B (2013) The effect of texture shape on the friction coefficient and stiffness of gas-lubricated parallel slider bearings. Tribol Int 67:278–288

    Article  Google Scholar 

  23. Marian VG et al (2011) Theoretical and experimental analysis of a laser textured thrust bearing. Tribol Lett 44(3):335–343

    Article  Google Scholar 

  24. Rahmani R et al (2010) An analytical approach for analysis and optimisation of slider bearings with infinite width parallel textures. Tribol Int 43(8):1551–1565

    Article  Google Scholar 

  25. Kawasegi N et al (2009) Development of cutting tools with microscale and nanoscale textures to improve frictional behavior. Precis Eng 33(3):248–254

    Article  Google Scholar 

  26. Hamilton DB, Walowit JA, Allen CM (1966) A theory of lubrication by microirregularities. J Fluids Eng 88(1):177–185

    Google Scholar 

  27. Amanov A et al (2013) Improvement in the tribological characteristics of Si–DLC coating by laser surface texturing under oil-lubricated point contacts at various temperatures. Surf Coat Technol 232:549–560

    Article  Google Scholar 

  28. Vandoni L et al (2012) Wear behavior of fiber laser textured TiN coatings in a heavy loaded sliding regime. Materials 5(12):2360–2382

    Article  ADS  Google Scholar 

  29. Ramesh A et al (2013) Friction characteristics of microtextured surfaces under mixed and hydrodynamic lubrication. Tribol Int 57:170–176

    Article  Google Scholar 

  30. Etsion I, Burstein L (1996) A model for mechanical seals with regular microsurface structure. Tribol Trans 39(3):677–683

    Article  Google Scholar 

  31. Tønder K (2001) Inlet roughness tribodevices: dynamic coefficients and leakage. Tribol Int 34(12):847–852

    Article  Google Scholar 

  32. Pettersson U, Jacobson S (2003) Influence of surface texture on boundary lubricated sliding contacts. Tribol Int 36(11):857–864

    Article  Google Scholar 

  33. Shum PW, Zhou ZF, Li KY (2013) Investigation of the tribological properties of the different textured DLC coatings under reciprocating lubricated conditions. Tribol Int 65:259–264

    Article  Google Scholar 

  34. Kovalchenko A et al (2011) Friction and wear behavior of laser textured surface under lubricated initial point contact. Wear 271(9–10):1719–1725

    Article  Google Scholar 

  35. Li J et al (2010) Tribological properties of laser surface texturing and molybdenizing duplex-treated Ni-base alloy. Tribol Trans 53(2):195–202

    Article  Google Scholar 

  36. Hu T, Hu L, Ding Q (2012) Effective solution for the tribological problems of Ti–6Al–4 V: combination of laser surface texturing and solid lubricant film. Surf Coat Technol 206(24):5060–5066

    Article  Google Scholar 

  37. Ding Q et al (2011) An explanation for laser-induced spallation effect in a-C:H films: altered phase evolution route caused by hydrogen doping. J Appl Phys 109(1):013501

    Article  ADS  Google Scholar 

  38. Wan D-P et al (2008) Microstructure and mechanical characteristics of laser coating-texturing alloying dimples. Appl Surf Sci 255(5):3251–3256

    Article  ADS  Google Scholar 

  39. Schreck S, Zum Gahr KH (2005) Laser-assisted structuring of ceramic and steel surfaces for improving tribological properties. Appl Surf Sci 247(1–4):616–622

    Article  ADS  Google Scholar 

  40. Amanov A et al (2013) The influence of bulges produced by laser surface texturing on the sliding friction and wear behavior. Tribol Int 60:216–223

    Article  Google Scholar 

  41. Wang X et al (2003) Loads carrying capacity map for the surface texture design of SiC thrust bearing sliding in water. Tribol Int 36(3):189–197

    Article  Google Scholar 

  42. Wang X, Kato K (2003) Improving the anti-seizure ability of SiC seal in water with RIE texturing. Tribol Lett 14(4):275–280

    Article  Google Scholar 

  43. Lu X, Khonsari MM (2007) An experimental investigation of dimple effect on the stribeck curve of journal bearings. Tribol Lett 27(2):169–176

    Article  Google Scholar 

  44. Yan D et al (2010) Significance of dimple parameters on the friction of sliding surfaces investigated by orthogonal experiments. Tribol Trans 53(5):703–712

    Article  Google Scholar 

  45. Wakuda M et al (2003) Effect of surface texturing on friction reduction between ceramic and steel materials under lubricated sliding contact. Wear 254(3–4):356–363

    Article  Google Scholar 

  46. Nakano M et al (2007) Applying micro-texture to cast iron surfaces to reduce the friction coefficient under lubricated conditions. Tribol Lett 28(2):131–137

    Article  Google Scholar 

  47. Etsion I (2005) State of the art in laser surface texturing. J Tribol 127(1):248

    Article  Google Scholar 

  48. Gao Y et al (2011) A two-step nanosecond laser surface texturing process with smooth surface finish. Appl Surf Sci 257(23):9960–9967

    Article  ADS  Google Scholar 

  49. Kuršelis K, Kiyan R, Chichkov BN (2012) Formation of corrugated and porous steel surfaces by femtosecond laser irradiation. Appl Surf Sci 258(22):8845–8852

    Article  ADS  Google Scholar 

  50. Wos P, Michalski J (2011) Effect of initial cylinder liner honing surface roughness on aircraft piston engine performances. Tribol Lett 41(3):555–567

    Article  Google Scholar 

  51. Costa HL, Hutchings IM (2007) Hydrodynamic lubrication of textured steel surfaces under reciprocating sliding conditions. Tribol Int 40(8):1227–1238

    Article  Google Scholar 

  52. Křupka I, Hartl M (2007) The effect of surface texturing on thin EHD lubrication films. Tribol Int 40(7):1100–1110

    Article  Google Scholar 

  53. Křupka I, Vrbka M, Hartl M (2008) Effect of surface texturing on mixed lubricated non-conformal contacts. Tribol Int 41(11):1063–1073

    Article  Google Scholar 

  54. Vilhena LM et al (2009) Surface texturing by pulsed Nd:YAG laser. Tribol Int 42(10):1496–1504

    Article  Google Scholar 

  55. Vrbka M et al (2010) Effect of surface texturing on rolling contact fatigue within mixed lubricated non-conformal rolling/sliding contacts. Tribol Int 43(8):1457–1465

    Article  Google Scholar 

  56. Wang X et al (2009) Preliminary investigation of the effect of dimple size on friction in line contacts. Tribol Int 42(7):1118–1123

    Article  Google Scholar 

  57. Vrbka M et al (2011) Effect of surface texturing on lubrication film formation and rolling contact fatigue within mixed lubricated non-conformal contacts. Meccanica 46(3):491–498

    Article  MATH  Google Scholar 

  58. Pettersson U, Jacobson S (2004) Friction and wear properties of micro textured DLC coated surfaces in boundary lubricated sliding. Tribol Lett 17(3):553–559

    Article  Google Scholar 

  59. Ryk G et al (2005) Experimental investigation of partial laser surface texturing for piston-ring friction reduction. Tribol Trans 48(4):583–588

    Article  Google Scholar 

  60. Sugita T, Ueda K, Kanemura Y (1984) Material removal mechanism of silicon nitride during rubbing in water. Wear 97(1):1–8

    Article  Google Scholar 

  61. Etsion I, Halperin G, Greenberg Y (1997) Increasing mechanical seals life with laser-textured seal faces. In: BHR group conference series publication. Mechanical Engineering Publications Limited

  62. Wang X (2001) The effect of laser texturing of SiC surface on the critical load for the transition of water lubrication mode from hydrodynamic to mixed. Tribol Int 34:703–711

  63. So H, Chen CH (2004) Effects of micro-wedges formed between parallel surfaces on mixed lubrication—Part I: experimental evidence. Tribol Lett 17(3):513–520

    Article  Google Scholar 

  64. Wang X, Hsu S (2004) An integrated surface technology for friction control: a new paradigm effects of geometric shapes on friction. In: The 4th China international symposium on tribology, Xi’an

  65. So H, Chen CH (2005) Effects of micro-wedges formed between parallel surfaces on mixed lubrication—Part II: modeling. Tribol Lett 19(2):83–91

    Article  Google Scholar 

  66. Wang X et al (2006) Optimization of the surface texture for silicon carbide sliding in water. Appl Surf Sci 253(3):1282–1286

    Article  ADS  Google Scholar 

  67. Qiu Y, Khonsari MM (2011) Experimental investigation of tribological performance of laser textured stainless steel rings. Tribol Int 44(5):635–644

    Article  Google Scholar 

  68. Qiu Y, Khonsari MM (2011) Performance analysis of full-film textured surfaces with consideration of roughness effects. J Tribol 133(2):021704

    Article  Google Scholar 

  69. Wang T et al (2014) Experimental study of two-phase mechanical face seals with laser surface texturing. Tribol Int 72:90–97

    Article  Google Scholar 

  70. Kligerman Y, Etsion I (2001) Analysis of the hydrodynamic effects in a surface textured circumferential gas seal. Tribol Trans 44(3):472–478

    Article  Google Scholar 

  71. McNickle AD, Etsion I (2004) Near-contact laser surface textured dry gas seals. J Tribol 126(4):788

    Article  Google Scholar 

  72. Feldman Y, Kligerman Y, Etsion I (2006) A hydrostatic laser surface textured gas seal. Tribol Lett 22(1):21–28

    Article  Google Scholar 

  73. Feldman Y et al (2006) The validity of the reynolds equation in modeling hydrostatic effects in gas lubricated textured parallel surfaces. J Tribol 128(2):345

    Article  Google Scholar 

  74. Brizmer V, Kligerman Y, Etsion I (2003) A laser surface textured parallel thrust bearing. Tribol Trans 46(3):397–403

    Article  Google Scholar 

  75. Qiu M, Delic A, Raeymaekers B (2012) The effect of texture shape on the load-carrying capacity of gas-lubricated parallel slider bearings. Tribol Lett 48(3):315–327

    Article  Google Scholar 

  76. Kango S, Singh D, Sharma RK (2011) Numerical investigation on the influence of surface texture on the performance of hydrodynamic journal bearing. Meccanica 47(2):469–482

    Article  Google Scholar 

  77. Lei S, Devarajan S, Chang Z (2009) A study of micropool lubricated cutting tool in machining of mild steel. J Mater Process Technol 209(3):1612–1620

    Article  Google Scholar 

  78. Sugihara T, Enomoto T (2009) Development of a cutting tool with a nano/micro-textured surface—improvement of anti-adhesive effect by considering the texture patterns. Precis Eng 33(4):425–429

    Article  Google Scholar 

  79. Enomoto T, Sugihara T (2010) Improving anti-adhesive properties of cutting tool surfaces by nano-/micro-textures. CIRP Ann Manuf Technol 59(1):597–600

    Article  Google Scholar 

  80. Enomoto T, Sugihara T (2011) Improvement of anti-adhesive properties of cutting tool by nano/micro textures and its mechanism. Proc Eng 19:100–105

    Article  Google Scholar 

  81. Obikawa T et al (2011) Micro-texture at the coated tool face for high performance cutting. Int J Mach Tools Manuf 51(12):966–972

    Article  Google Scholar 

  82. Enomoto T et al (2012) Highly wear-resistant cutting tools with textured surfaces in steel cutting. CIRP Ann Manuf Technol 61(1):571–574

    Article  MathSciNet  Google Scholar 

  83. Sugihara T, Enomoto T (2012) Improving anti-adhesion in aluminum alloy cutting by micro stripe texture. Precis Eng 36(2):229–237

    Article  Google Scholar 

  84. Sugihara T, Enomoto T (2013) Crater and flank wear resistance of cutting tools having micro textured surfaces. Precis Eng 37(4):888–896

    Article  Google Scholar 

  85. Engel U, Popp U (2006) Microtexturing of cold-forging tools—influence on tool life. Proc Inst Mech Eng B 220(1):27–33

    Google Scholar 

  86. Neves D, Diniz AE, de Lima MSF (2006) Efficiency of the laser texturing on the adhesion of the coated twist drills. J Mater Process Technol 179(1–3):139–145

    Article  Google Scholar 

  87. Zhao W, Wang L, Xue Q (2010) Influence of micro/nano-textures and chemical modification on the nanotribological property of Au surface. Colloids Surf A 366(1–3):191–196

    Article  Google Scholar 

  88. Koshy P, Tovey J (2011) Performance of electrical discharge textured cutting tools. CIRP Ann Manuf Technol 60(1):153–156

    Article  Google Scholar 

  89. Jianxin D et al (2012) Performance of carbide tools with textured rake-face filled with solid lubricants in dry cutting processes. Int J Refract Metal Hard Mater 30(1):164–172

    Article  Google Scholar 

  90. Wu Z et al (2012) Tribological behavior of textured cemented carbide filled with solid lubricants in dry sliding with titanium alloys. Wear 292–293:135–143

    Article  Google Scholar 

  91. Xie J et al (2012) Micro-grinding of micro-groove array on tool rake surface for dry cutting of titanium alloy. Int J Precis Eng Manuf 13(10):1845–1852

    Article  Google Scholar 

  92. Ze W et al (2012) Performance of the self-lubricating textured tools in dry cutting of Ti–6Al–4V. Int J Adv Manuf Technol 62(9–12):943–951

    Article  Google Scholar 

  93. Deng J et al (2013) Performance of femtosecond laser-textured cutting tools deposited with WS2 solid lubricant coatings. Surf Coat Technol 222:135–143

    Article  Google Scholar 

  94. Ling TD et al (2013) Surface texturing of drill bits for adhesion reduction and tool life enhancement. Tribol Lett 52(1):113–122

    Article  Google Scholar 

  95. Xing Y et al (2014) Cutting performance and wear mechanism of nanoscale and microscale textured Al2O3/TiC ceramic tools in dry cutting of hardened steel. Int J Refract Metal Hard Mater 43:46–58

    Article  Google Scholar 

  96. Knoll GD, Peeken HJ (1982) Hydrodynamic lubrication of piston skirts. J Tribol 104(4):504–508

    Google Scholar 

  97. Hoshi M, Baba Y (1986) A study of piston friction force in an internal combustion engine. ASLE Trans 30(4):444–451

    Article  Google Scholar 

  98. Nakada M (1994) Trends in engine technology and tribology. Tribol Int 27(1):3–8

    Article  MathSciNet  Google Scholar 

  99. Yu H, Wang X, Zhou F (2009) Geometric shape effects of surface texture on the generation of hydrodynamic pressure between conformal contacting surfaces. Tribol Lett 37(2):123–130

    Article  Google Scholar 

  100. Nanbu T et al (2008) Micro-textures in concentrated conformal-contact lubrication: effects of texture bottom shape and surface relative motion. Tribol Lett 29(3):241–252

    Article  Google Scholar 

  101. Ren N et al (2007) Micro textures in concentrated-conformal-contact lubrication: effect of distribution patterns. Tribol Lett 28(3):275–285

    Article  Google Scholar 

  102. Mourier L et al (2006) Transient increase of film thickness in micro-textured EHL contacts. Tribol Int 39(12):1745–1756

    Article  Google Scholar 

  103. Tønder K (2004) Hydrodynamic effects of tailored inlet roughnesses: extended theory. Tribol Int 37(2):137–142

    Article  Google Scholar 

  104. Yu XQ, He S, Cai RL (2002) Frictional characteristics of mechanical seals with a laser-textured seal face. J Mater Process Technol 129(1–3):463–466

    Article  Google Scholar 

  105. Xiao N, Khonsari MM (2012) Thermal performance of mechanical seals with textured side-wall. Tribol Int 45(1):1–7

    Article  Google Scholar 

  106. Ma C et al (2013) Improving hydrophobicity of laser textured SiC surface with micro-square convexes. Appl Surf Sci 266:51–56

    Article  ADS  Google Scholar 

  107. Ma C et al (2013) Anisotropic wettability of laser micro-grooved SiC surfaces. Appl Surf Sci 284:930–935

    Article  ADS  Google Scholar 

  108. Wang X, Kato K, Adachi K (2005) Running-in effect on the load-carrying capacity of a water-lubricated SiC thrust bearing. Proce Inst Mech Eng J 219(2):117–124

    Article  Google Scholar 

  109. Xie Y et al (2013) An experimental investigation of tribological performance of triangular textures in water lubrication regime. Sci China Phys Mech Astron 57(2):273–279

    Article  Google Scholar 

  110. Siripuram RB, Stephens LS (2004) Effect of deterministic asperity geometry on hydrodynamic lubrication. J Tribol 126(3):527

    Article  Google Scholar 

  111. Segu D, Kim S (2014) Influence on friction behavior of micro-texturing under lubricated non-conformal contact. Meccanica 49(2):483–492

    Article  MATH  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the University of Malaya and Ministry of Higher Education (MOHE) of Malaysia for HIR-MOHE Project (UM.C/HIR/MOHE/ENG/07), which made this study possible.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arslan Ahmed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmed, A., Masjuki, H.H., Varman, M. et al. An overview of geometrical parameters of surface texturing for piston/cylinder assembly and mechanical seals. Meccanica 51, 9–23 (2016). https://doi.org/10.1007/s11012-015-0180-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-015-0180-6

Keywords

Navigation