Skip to main content
Log in

Self-adaptive vibration control of simply supported beam under a moving mass using self-recurrent wavelet neural networks via adaptive learning rates

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

A self-recurrent wavelet neural network (SRWNN) is used to control suppression of vibration of an Euler–Bernoulli beam under excitation of a moving mass traveling along a vibrating path. The proposed control structure uses one SRWNN as an identifier and one as a controller. The SRWNN identifier is trained to model the dynamic behavior of the process and provide the SRWNN controller with information about system sensitivity. The SRWNN controller uses the sensitivity information provided by the SRWNN identifier to update weights and produce a signal that controls beam vibration. The gradient descent method and adaptive learning rates (ALRs) are used to update all SRWNN weights. The ALRs are obtained using the discrete Lyapunov stability theorem which guarantees the convergence of the proposed control structure. The performance and robustness of the proposed controller are evaluated at different mass ratios of moving mass to beam and for dimensionless velocity of a moving mass. The simulations verify the effectiveness and robustness of the controller.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Kononov AV, de Borst R (2002) Instability analysis of vibrations of a uniformly moving mass in one and two-dimensional elastic systems. Eur J Mech A Solids 21(1):151–165

    Article  MATH  MathSciNet  Google Scholar 

  2. Fryba L (1999) Vibration of Solids and Structures Under Moving Loads. Thomas Telford, London

    Book  Google Scholar 

  3. Bilello C, Bergman LA, Kuchma D (2004) Experimental investigation of a small-scale bridge model under a moving mass. J Struct Eng 130(5):799–804

    Article  Google Scholar 

  4. Sung Y-G (2002) Modelling and control with piezoactuators for a simply supported beam under a moving mass. J Sound Vib 250(4):617–626

    Article  ADS  Google Scholar 

  5. Nikkhoo A, Rofooei FR, Shadnam MR (2007) Dynamic behavior and modal control of beams under moving mass. J Sound Vib 306(3–5):712–724

    Article  MathSciNet  ADS  Google Scholar 

  6. Prabakar RS, Sujatha C, Narayanan S (2009) Optimal semi-active preview control response of a half car vehicle model with magnetorheological damper. J Sound Vib 326(3–5):400–420

    Article  ADS  Google Scholar 

  7. Pisarski D, Bajer CI (2010) Semi-active control of 1D continuum vibrations under a travelling load. J Sound Vib 329(2):140–149

    Article  ADS  Google Scholar 

  8. Ryu B.-J, Kong Y.-S (2012) Dynamic responses and active vibration control of beam structures under a travelling mass. INTECH open Access Publisher

  9. Flanders S, Burke LI, Yalcintas M (1994) Alternate neural network architectures for beam vibration minimization. ASME Publ AD 45:293

    Google Scholar 

  10. Chen CI, Napolitano MR, Smith JE (1994) Active vibration control using the modified independent modal space control (MIMSC) algorithm and neural networks as state estimators. J Intell Mater Syst Struct 5(4):550–558

    Article  Google Scholar 

  11. Smyser C, Chandrashekhara K (1997) Robust vibration control of composite beams using piezoelectric devices and neural networks. Smart Mater Struct 6(2):178

    Article  ADS  Google Scholar 

  12. Valoor MT, Chandrashekhara K, Agarwal S (2001) Self-adaptive vibration control of smart composite beams using recurrent neural architecture. Int J Solids Struct 38(44):7857–7874

    Article  MATH  Google Scholar 

  13. Qiu Z, Zhang X, Ye C (2012) Vibration suppression of a flexible piezoelectric beam using BP neural network controller. Acta Mech Solida Sin 25(4):417–428

    Article  Google Scholar 

  14. Ku C-C, Lee KY (1995) Diagonal recurrent neural networks for dynamic systems control. Neural Net IEEE Trans 6(1):144–156

    Article  Google Scholar 

  15. Li X, Yu W (2002) Dynamic system identification via recurrent multilayer perceptrons. Inf Sci 147(1):45–63

    Article  MATH  Google Scholar 

  16. Lin F-J et al (2006) An adaptive recurrent-neural-network motion controller for XY table in CNC machine. Syst Man Cybern B Cybern IEEE Trans 36(2):286–299

    Google Scholar 

  17. Lin F-J et al (2005) Hybrid controller with recurrent neural network for magnetic levitation system. Magn IEEE Trans 41(7):2260–2269

    Article  ADS  Google Scholar 

  18. Pearlmutter BA (1989) Learning state space trajectories in recurrent neural networks. Neural Comput 1(2):263–269

    Article  Google Scholar 

  19. Yu W (2004) Nonlinear system identification using discrete-time recurrent neural networks with stable learning algorithms. Inf Sci 158:131–147

    Article  MATH  Google Scholar 

  20. Cao L et al (1995) Predicting chaotic time series with wavelet networks. Physica D 85(1):225–238

    MATH  ADS  Google Scholar 

  21. Choi J-T, Choi Y-H, Park J-B (2003) Stable intelligent control of chaotic systems via wavelet neural network. 제어로봇시스템학회 국제학술대회 논문집 pp. 316–321

  22. Oussar Y et al (1998) Training wavelet networks for nonlinear dynamic input–output modeling. Neurocomputing 20(1):173–188

    Article  MATH  Google Scholar 

  23. Zhang Q, Benveniste A (1992) Wavelet networks. Neural Net IEEE Trans 3(6):889–898

    Article  Google Scholar 

  24. Zhang J et al (1995) Wavelet neural networks for function learning. Signal Proc IEEE Trans 43(6):1485–1497

    Article  ADS  Google Scholar 

  25. Yoo SJ, Park JB, Choi YH (2005) Stable predictive control of chaotic systems using self-recurrent wavelet neural network. Int J Control Autom Syst. 3(1):43–55

    Google Scholar 

  26. Yoo SJ, Park JB, Choi YH (2005) Direct adaptive control using self recurrent wavelet neural network via adaptive learning rates for stable path tracking of mobile robots. In: American control conference, 2005. Proceedings of the 2005. 2005. IEEE

  27. Wai R-J, Chang J-M (2002) Intelligent control of induction servo motor drive via wavelet neural network. Electr Power Syst Res 61(1):67–76

    Article  Google Scholar 

  28. Oussar Y, Dreyfus G (2000) Initialization by selection for wavelet network training. Neurocomputing 34(1):131–143

    Article  MATH  Google Scholar 

  29. Yoo SJ, Park JB, Choi YH (2007) Indirect adaptive control of nonlinear dynamic systems using self recurrent wavelet neural networks via adaptive learning rates. Inf Sci 177(15):3074–3098

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soheil Ganjefar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ganjefar, S., Rezaei, S. & Pourseifi, M. Self-adaptive vibration control of simply supported beam under a moving mass using self-recurrent wavelet neural networks via adaptive learning rates. Meccanica 50, 2879–2898 (2015). https://doi.org/10.1007/s11012-015-0174-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-015-0174-4

Keywords

Navigation