Skip to main content
Log in

Structural Seismic Vibration Analysis Using Multistep Wavelet Decomposition

  • Original Contribution
  • Published:
Journal of The Institution of Engineers (India): Series B Aims and scope Submit manuscript

Abstract

Structural vibration is critical in designing buildings and foundations for equipment. Planning for a smart city demands effective monitoring of the effects of seismic vibrations that will be possible to implement from a remote end. This paper tries to monitor seismic vibration from the top of a structure using wavelet decompositions. At first, vibrational drifts are obtained and then processed through multistep decompositions. Various coefficients obtained have been analysed by their statistical nature. Studies have been made for both open and closed loops with active mass addition. The percentage change of vibrational effect has been compared with the percentage change of coefficients at different decomposition steps by their mean and standard deviations. Thus, the study ends with some valuable indices for vibration monitoring.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. M. Saravanabalaji, N. Sivakumaran, S. Sankarnaraynan, Dynamic compensation of acoustic resonance for water flow system. J. Inst. Eng. India Ser. B 100, 405–415 (2019). https://doi.org/10.1007/s40031-019-00404-0

    Article  Google Scholar 

  2. B.F. Spencer Jr., S.J. Dyke, H.S. Deoskar, Benchmark problems in strucural control: part I–active mass drive system. Earthq. Eng. Struct. Dyn. 27(11), 1127–1139 (1998)

    Article  Google Scholar 

  3. A. Sabato, M.Q. Feng, Y. Fukuda, D.L. Carní, G. Fortino, A novel wireless accelerometer board for measuring low-frequency and low-amplitude structural vibration. IEEE Sens. J. 16(9), 2942–2949 (2016). https://doi.org/10.1109/JSEN.2016.2522940

    Article  Google Scholar 

  4. F.A. Shirazi, J. Mohammadpour, K.M. Grigoriadis, G. Song, Identification and control of an MR damper with stiction effect and its application in structural vibration mitigation. IEEE Trans. Control Syst. Technol. 20(5), 1285–1301 (2012). https://doi.org/10.1109/TCST.2011.2164920

    Article  Google Scholar 

  5. S.O.R. Moheimani, B.J.G. Vautier, Resonant control of structural vibration using charge-driven piezoelectric actuators. IEEE Trans. Control Syst. Technol. 13(6), 1021–1035 (2005). https://doi.org/10.1109/TCST.2005.857407

    Article  Google Scholar 

  6. H. Gao, W. Zhan, H.R. Karimi, X. Yang, S. Yin, Allocation of actuators and sensors for coupled-adjacent-building vibration attenuation. IEEE Trans. Industr. Electron. 60(12), 5792–5801 (2013). https://doi.org/10.1109/TIE.2012.2233699

    Article  Google Scholar 

  7. G. Jin, M.K. Sain, B.E. Spencer, Nonlinear blackbox modeling of MR-dampers for civil structural control. IEEE Trans. Control Syst. Technol. 13(3), 345–355 (2005). https://doi.org/10.1109/TCST.2004.841645

    Article  Google Scholar 

  8. R. Subbaramaiah, S.A. Al-Jufout, A. Ahmed, M.M. Mozumdar, Design of vibration-sourced piezoelectric harvester for battery-powered smart road sensor systems. IEEE Sens. J. 20(23), 13940–13949 (2020). https://doi.org/10.1109/JSEN.2020.3000489

    Article  Google Scholar 

  9. F. Duan, Z. Liu, Y. Song, S. Derosa, A. Rønnquist, D. Zhai, Vibration measurement and wave reflection analysis in an electrified railway catenary based on analytical methods. IEEE Trans. Instrum. Meas. 6503112, 1–12 (2021). https://doi.org/10.1109/TIM.2021.3063178

    Article  Google Scholar 

  10. X. Li, W. Yu, S. Villegas, Structural health monitoring of building structures with online data mining methods. IEEE Syst. J. 10(3), 1291–1300 (2016). https://doi.org/10.1109/JSYST.2015.2481380

    Article  Google Scholar 

  11. A.A. Savkar, K.D. Murphy, Z.C. Leseman, T.J. Mackin, M.R. Begley, On the use of structural vibrations to release stiction failed MEMS. J. Microelectromech. Syst. 16(1), 163–173 (2007). https://doi.org/10.1109/JMEMS.2006.885986

    Article  Google Scholar 

  12. M. Hosek, N. Olgac, A single-step automatic tuning algorithm for the delayed resonator vibration absorber. IEEE/ASME Trans. Mechatron. 7(2), 245–255 (2002). https://doi.org/10.1109/TMECH.2002.1011261

    Article  Google Scholar 

  13. B. Vysotskyi, F. Parrain, D. Aubry, P. Gaucher, X. Le Roux, E. Lefeuvre, Engineering the structural nonlinearity using multimodal-shaped springs in MEMS. J. Microelectromech. Syst. 27(1), 40–46 (2018). https://doi.org/10.1109/JMEMS.2017.2779179

    Article  Google Scholar 

  14. Q. Wang, D. Wang, A reduced-order model about structural wave control based upon the concept of degree of controllability. IEEE Trans. Autom. Control 39(8), 1711–1713 (1994). https://doi.org/10.1109/9.310058

    Article  MathSciNet  MATH  Google Scholar 

  15. S. Jinachandran et al., Fabrication and characterization of a magnetized metal-encapsulated FBG sensor for structural health monitoring. IEEE Sens. J. 18(21), 8739–8746 (2018). https://doi.org/10.1109/JSEN.2018.2866803

    Article  Google Scholar 

  16. P. Guo, X. Liu, S. Tang, J. Cao, Enabling coverage-preserving scheduling in wireless sensor networks for structural health monitoring. IEEE Trans. Comput. 65(8), 2456–2469 (2016). https://doi.org/10.1109/TC.2015.2485204

    Article  MathSciNet  MATH  Google Scholar 

  17. D.K. Ray, A. Rai, A.K. Khetan et al., Brush fault analysis for Indian DC traction locomotive using DWT-based multi-resolution analysis. J. Inst. Eng. India Ser. B 101, 335–345 (2020). https://doi.org/10.1007/s40031-020-00468-3

    Article  Google Scholar 

  18. A. Di Gerlando, G. Foglia, R. Perini, Permanent magnet machines for modulated damping of seismic vibrations: electrical and thermal modeling. IEEE Trans. Industr. Electron. 55(10), 3602–3610 (2008). https://doi.org/10.1109/TIE.2008.928105

    Article  Google Scholar 

  19. A.H. Khan, S. Li, Sliding mode control with PID sliding surface for active vibration damping of pneumatically actuated soft robots. IEEE Access 8, 88793–88800 (2020). https://doi.org/10.1109/ACCESS.2020.2992997

    Article  Google Scholar 

  20. W. Gersch, D. Foutch, Least squares estimates of structural system parameters using covariance function data. IEEE Trans. Autom. Control 19(6), 898–903 (1974). https://doi.org/10.1109/TAC.1974.1100731

    Article  Google Scholar 

  21. X. Chu, Z.X. Zhou, G.J. Deng, T.J. Jiang, Y.K. Lei, Study on damage identification of beam bridge based on characteristic curvature and improved wavelet threshold de-noising algorithm. Adv. Model. Anal. B 60(2), 498–516 (2017). https://doi.org/10.18280/ama_b.600217

    Article  Google Scholar 

  22. Q. Xia, W.J. Qu, Y.Q. Li, J. Zhao, Analysis of natural vibration frequency of different support slabs under the traffic vibration based on field measurement. Instrum. Mesur. Métrol. 17(2), 219–233 (2018). https://doi.org/10.3166/I2M.17.219-233

    Article  Google Scholar 

  23. S.A. Neilda, P.D. McFadden, M.S. Williams, A review of time-frequency methods for structural vibration analysis. Eng. Struct. 25, 713–728 (2003). https://doi.org/10.1016/S0141-0296(02)00194-3

    Article  Google Scholar 

  24. S.S. Ghosh, S. Chattopadhyay, A. Das, Fast Fourier transform and wavelet-based statistical computation during fault in snubber circuit connected with robotic brushless direct current motor. Cogn. Comput. Syst. (2022). https://doi.org/10.1049/ccs2.12041

    Article  Google Scholar 

  25. T.K. Das, S. Chattopadhyay, A. Das, Line to line short circuit fault diagnosis in photo-voltaic array based microgrid system. AMSE Measur. Control 90(4), 341–352 (2017). https://doi.org/10.18280/mmc_a.900403

    Article  Google Scholar 

  26. N. Mukherjee, A. Chattopadhyaya, S. Chattopadhyay, S. Sengupta, Discrete-wavelet-transform and stockwell-transform-based statistical parameters estimation for fault analysis in grid-connected wind power system. IEEE Syst. J. 14(3), 4320–4328 (2020). https://doi.org/10.1109/JSYST.2020.2984132

    Article  Google Scholar 

  27. A.M. Medhi, A.D. Patange, S.S. Pardeshi, R. Jegadeeshwaran, M. Kuntoglu, Overview of contemporary systems driven by open-design movement, arXiv:2201.05698v1 [cs.AR], https://doi.org/10.48550/arXiv.2201.05698

  28. S.S. Patil, S.S. Pardeshi, N. Pradhan, A.D. Patange, Cutting tool condition monitoring using a deep learning-based artificial neural network. Int. J. Perform. Eng. 18(1), 37–46 (2022)

    Article  Google Scholar 

  29. H.S. Khade, A.D. Patange, S.S. Pardeshi, R. Jegadeeshwaran, Design of bagged tree ensemble for carbide coated inserts fault diagnosis. Mater. Today Proc. 46, 1283–1289 (2021). https://doi.org/10.1016/j.matpr.2021.02.128

    Article  Google Scholar 

  30. A. Khairnar, A. Patange, S. Pardeshi, R. Jegadeeshwaran, Supervision of carbide tool condition by training of vibration-based statistical model using boosted trees ensemble. Int. J. Perform. Eng. 17(2), 229–240 (2021). https://doi.org/10.23940/ijpe.21.02.p7.229240

    Article  Google Scholar 

  31. N.S. Bajaj, A.D. Patange, R. Jegadeeshwaran, K.A. Kulkarni, R.S. Ghatpande, A.M. Kapadnis, A bayesian optimized discriminant analysis model for condition monitoring of face milling cutter using vibration datasets. ASME J. Nondestruct. Eval. 5(2), 021002 (2021)

    Article  Google Scholar 

  32. A.D. Patange, R. Jegadeeshwaran, N.S. Bajaj, A.N. Khairnar, N.A. Gavade, Application of machine learning for tool condition monitoring in turning. Sound Vib. 56(2), 127–145 (2022). https://doi.org/10.32604/sv.2022.014910

    Article  Google Scholar 

  33. T.Y. Deo, A.D. Patange, S.S. Pardeshi, R. Jegadeeshwaran, A.N. Khairnar, H.S. Khade, A white-box SVM framework and its swarm-based optimization for supervision of toothed milling cutter through characterization of spindle vibrations, arXiv:2112.08421v1 [cs.LG], https://doi.org/10.48550/arXiv.2112.08421

  34. A.D. Patange, R. Jegadeeshwaran, Application of bayesian family classifiers for cutting tool inserts health monitoring on CNC milling. Int. J. Progn. Health Manag. (2020). https://doi.org/10.36001/ijphm.2020.v11i2.2929

    Article  Google Scholar 

  35. A.D. Patange, R. Jegadeeshwaran, A machine learning approach for vibration-based multipoint tool insert health prediction on vertical machining centre (VMC). Measurement (2021). https://doi.org/10.1016/j.measurement.2020.108649

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aniruddha Das.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, A., Chattopadhyay, S. Structural Seismic Vibration Analysis Using Multistep Wavelet Decomposition. J. Inst. Eng. India Ser. B 103, 2135–2143 (2022). https://doi.org/10.1007/s40031-022-00794-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40031-022-00794-8

Keywords

Navigation