Skip to main content
Log in

Analysis of bias DC voltage effect on thermoelastic damping ratio in short nano-beam resonators based on nonlocal elasticity theory and dual-phase-lagging heat conduction model

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

Thermoelastic damping (TED) is a fundamental dissipation mechanism in micro/nano-scale resonators. Therefore, it is crucial to minimize this dissipation in design of these resonators. The problem has been formulated by the nonlocal theory of elasticity to take into account the small scale effect. Moreover, the Timoshenko beam model has been used to capture the transverse shear deformation and rotary inertia effects. The coupled thermoelastic equations have been derived using the generalized thermoelasticity theory based on dual-phase-lagging heat conduction model for transverse vibration of an electrostatically deflected short beam. A step-by-step linearization method has been used to escape from the nonlinearity. Afterwards, the Galerkin’s weighted residual method has been applied to discretize the coupled dynamic equations of a beam resonator with both ends clamped and isothermal. Then, the complex-frequency approach has been utilized to obtain eigenvalue solution and TED ratio. The numerical results addressing importance of the nonlocal effect on the TED ratio of the short beam resonators have been presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Ansari R, Sahmani S (2011) Bending behavior and buckling of nanobeams including surface stress effects corresponding to different beam theories. Int J Eng Sci 49:1244–1255

    Article  MathSciNet  Google Scholar 

  2. Maranganti R, Sharma P (2007) Length scales at which classical elasticity breaks down for various materials. Phys Rev Lett 98:195504

    Article  ADS  Google Scholar 

  3. Eringen AC (1967) Theory of micropolar plates. Z Angew Math Phys 18:12–30

    Article  Google Scholar 

  4. Aifantis E (1999) Strain gradient interpretation of size effects. Int J Fract 95:299–314

    Article  Google Scholar 

  5. Hadjesfandiari AR, Dargush GF (2011) Couple stress theory for solids. Int J Solids Struct 48:2496–2510

    Article  Google Scholar 

  6. Yang F, Chong A, Lam D, Tong P (2002) Couple stress based strain gradient theory for elasticity. Int J Solids Struct 39:2731–2743

    Article  MATH  Google Scholar 

  7. Eringen AC (1972) Linear theory of nonlocal elasticity and dispersion of plane waves. Int J Eng Sci 10:425–435

    Article  MATH  Google Scholar 

  8. Eringen AC (1983) On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. J Appl Phys 54:4703–4710

    Article  ADS  Google Scholar 

  9. Eringen AC (2002) Nonlocal continuum field theories. Springer, Berlin

    MATH  Google Scholar 

  10. Eringen AC (1972) Nonlocal polar elastic continua. Int J Eng Sci 10:1–16

    Article  MATH  MathSciNet  Google Scholar 

  11. Peddieson J, Buchanan GR, McNitt RP (2003) Application of nonlocal continuum models to nanotechnology. Int J Eng Sci 41:305–312

    Article  Google Scholar 

  12. Reddy J (2007) Nonlocal theories for bending, buckling and vibration of beams. Int J Eng Sci 45:288–307

    Article  MATH  Google Scholar 

  13. Wang C, Zhang Y, He X (2007) Vibration of nonlocal Timoshenko beams. Nanotechnology 18:105401

    Article  ADS  Google Scholar 

  14. Hu Y-G, Liew KM, Wang Q (2009) Nonlocal elastic beam models for flexural wave propagation in double-walled carbon nanotubes. J Appl Phys 106:044301–044306

    Article  ADS  Google Scholar 

  15. Aydogdu M (2009) A general nonlocal beam theory: its application to nanobeam bending, buckling and vibration. Physica E Low Dimens Syst Nanostruct 41:1651–1655

    Article  ADS  Google Scholar 

  16. Roque C, Ferreira A, Reddy J (2011) Analysis of Timoshenko nanobeams with a nonlocal formulation and meshless method. Int J Eng Sci 49:976–984

    Article  MATH  Google Scholar 

  17. Eltaher M, Emam SA, Mahmoud F (2012) Free vibration analysis of functionally graded size-dependent nanobeams. Appl Math Comput 218:7406–7420

    Article  MATH  MathSciNet  Google Scholar 

  18. Thai H-T (2012) A nonlocal beam theory for bending, buckling, and vibration of nanobeams. Int J Eng Sci 52:56–64

    Article  MathSciNet  Google Scholar 

  19. Thai H-T, Vo TP (2012) A nonlocal sinusoidal shear deformation beam theory with application to bending, buckling, and vibration of nanobeams. Int J Eng Sci 54:58–66

    Article  MathSciNet  Google Scholar 

  20. Ekinci K, Roukes M (2005) Nanoelectromechanical systems. Rev Sci Instrum 76:061101–061112

    Article  ADS  Google Scholar 

  21. Tilmans HA, Elwenspoek M, Fluitman JH (1992) Micro resonant force gauges. Sensor Actuators A Phys 30:35–53

    Article  Google Scholar 

  22. Lothe J (1960) Aspects of the theories of dislocation mobility and internal friction. Phys Rev 117:704

    Article  ADS  Google Scholar 

  23. Keyvani A, Sadeghi MH, Rezazadeh G, Bahrami M (2013) Effects of squeeze film damping on a clamped-clamped beam mems filter. J Micro-Bio Robot 8:83–90

    Article  Google Scholar 

  24. Vinokur R (2003) Vibroacoustic effects in mems. Sound Vib 37:22–26

    Google Scholar 

  25. Zhang C, Xu G, Jiang Q (2003) Analysis of the air-damping effect on a micromachined beam resonator. Math Mech Solids 8:315–325

    Article  MATH  Google Scholar 

  26. Zener C (1937) Internal friction in solids. I. Theory of internal friction in reeds. Phys Rev 52:230

    Article  MATH  ADS  Google Scholar 

  27. Zener C (1938) Internal friction in solids II. General theory of thermoelastic internal friction. Phys Rev 53:90

    Article  MATH  ADS  Google Scholar 

  28. Lifshitz R, Roukes ML (2000) Thermoelastic damping in micro-and nanomechanical systems. Phys rev B 61:5600

    Article  ADS  Google Scholar 

  29. Mohanty P, Harrington D, Ekinci K, Yang Y, Murphy M, Roukes M (2002) Intrinsic dissipation in high-frequency micromechanical resonators. Phys Rev B 66:085416

    Article  ADS  Google Scholar 

  30. Landau LD, Lifshitz EM (1959) Theory of elasticity. Pergamon Press, New York

    Google Scholar 

  31. Srikar V, Senturia SD (2002) Thermoelastic damping in fine-grained polysilicon flexural beam resonators. J Microelectromech Syst 11:499–504

    Article  Google Scholar 

  32. Duwel A, Gorman J, Weinstein M, Borenstein J, Ward P (2003) Experimental study of thermoelastic damping in mems gyros. Sensor Actuators A Phys 103:70–75

    Article  Google Scholar 

  33. Sun Y, Fang D, Soh AK (2006) Thermoelastic damping in micro-beam resonators. Int J Solids Struct 43:3213–3229

    Article  MATH  Google Scholar 

  34. Zamanian M, Khadem S (2010) Analysis of thermoelastic damping in microresonators by considering the stretching effect. Int J Mech Sci 52:1366–1375

    Article  Google Scholar 

  35. Sun Y, Saka M (2010) Thermoelastic damping in micro-scale circular plate resonators. J Sound Vib 329:328–337

    Article  ADS  Google Scholar 

  36. Vahdat AS, Rezazadeh G (2011) Effects of axial and residual stresses on thermoelastic damping in capacitive micro-beam resonators. J Franklin Inst 348:622–639

    Article  MATH  MathSciNet  Google Scholar 

  37. Vahdat AS, Rezazadeh G, Ahmadi G (2012) Thermoelastic damping in a micro-beam resonator tunable with piezoelectric layers. Acta Mech Solida Sin 25:73–81

    Article  Google Scholar 

  38. Hoseinzadeh M, Khadem S (2011) Thermoelastic vibration and damping analysis of double-walled carbon nanotubes based on shell theory. Phys E 43:1146–1154

    Article  Google Scholar 

  39. Tunvir K, Ru C, Mioduchowski A (2012) Effect of cross-sectional shape on thermoelastic dissipation of micro/nano elastic beams. Int J Mech Sci 62:77–88

    Article  Google Scholar 

  40. Rezazadeh G, Vahdat AS, Tayefeh-rezaei S, Cetinkaya C (2012) Thermoelastic damping in a micro-beam resonator using modified couple stress theory. Acta Mech 223:1137–1152

    Article  MATH  MathSciNet  Google Scholar 

  41. Hoseinzadeh M, Khadem S (2014) A nonlocal shell theory model for evaluation of thermoelastic damping in the vibration of a double-walled carbon nanotube. Physica E Low Dimens Syst Nanostruct 57:6–11

    Article  ADS  Google Scholar 

  42. Sun Y, Jiang Y, Yang J (2014) Thermoelastic damping of the axisymmetric vibration of laminated trilayered circular plate resonators. Can J Phys 92:1026–1032

    Article  ADS  Google Scholar 

  43. Nowinski JL (1978) Theory of thermoelasticity with applications. Sijthoff & Noordhoff, The Netherlands

    Book  MATH  Google Scholar 

  44. Cahill DG, Ford WK, Goodson KE, Mahan GD, Majumdar A, Maris HJ et al (2003) Nanoscale thermal transport. J Appl Phys 93:793–818

    Article  ADS  Google Scholar 

  45. Lord HW, Shulman Y (1967) A generalized dynamical theory of thermoelasticity. J Mech Phys Solids 15:299–309

    Article  MATH  ADS  Google Scholar 

  46. Green A, Lindsay K (1972) Thermoelasticity. J Elast 2:1–7

    Article  MATH  Google Scholar 

  47. Tzou D (1995) A unified field approach for heat conduction from macro-to micro-scales. J Heat Transf 117:8–16

    Article  Google Scholar 

  48. Tzou DY (1996) Macro-to micro-scale heat transfer: the lagging behavior. CRC Press, Boca Raton

    Google Scholar 

  49. Ramadan K, Tyfour W, Al-Nimr M (2009) On the analysis of short-pulse laser heating of metals using the dual phase lag heat conduction model. J Heat Transf 131:111301

    Article  Google Scholar 

  50. Ordonez-Miranda J, Alvarado-Gil J (2010) Determination of time-delay parameters in the dual-phase lagging heat conduction model. J Heat Transf 132:061302

    Article  Google Scholar 

  51. Kim P, Lieber CM (1999) Nanotube nanotweezers. Science 286:2148–2150

    Article  Google Scholar 

  52. Snow E, Campbell P, Novak J (2002) Single-wall carbon nanotube atomic force microscope probes. Appl Phys Lett 80:2002–2004

  53. Rezazadeh G, Tahmasebi A, Zubstov M (2006) Application of piezoelectric layers in electrostatic mem actuators: controlling of pull-in voltage. Microsyst Technol 12:1163–1170

    Article  Google Scholar 

  54. Liu S, Davidson A, Lin Q (2003) Simulating nonlinear dynamics and chaos in a mems cantilever using poincare mapping. IEEE 2:1092–1095

    Google Scholar 

  55. Sadd MH (2009) Elasticity theory applications and numerics. Elsevier, Amsterdam

    Google Scholar 

  56. Lu P, Lee H, Lu C, Zhang P (2007) Application of nonlocal beam models for carbon nanotubes. Int J Solids Struct 44:5289–5300

    Article  MATH  Google Scholar 

  57. Wang Q (2005) Wave propagation in carbon nanotubes via nonlocal continuum mechanics. J Appl Phys 98:124301

    Article  ADS  Google Scholar 

  58. Wang L, Hu H (2005) Flexural wave propagation in single-walled carbon nanotubes. Phys Rev B 71:195412

    Article  ADS  Google Scholar 

  59. Narendar S, Mahapatra DR, Gopalakrishnan S (2011) Prediction of nonlocal scaling parameter for armchair and zigzag single-walled carbon nanotubes based on molecular structural mechanics, nonlocal elasticity and wave propagation. Int J Eng Sci 49:509–522

    Article  MATH  Google Scholar 

  60. Narendar S, Gopalakrishnan S (2011) Axial wave propagation in coupled nanorod system with nonlocal small scale effects. Compos B Eng 42:2013–2023

    Article  Google Scholar 

  61. Guo F, Wang G, Rogerson G (2012) Analysis of thermoelastic damping in micro-and nanomechanical resonators based on dual-phase-lagging generalized thermoelasticity theory. Int J Eng Sci 60:59–65

    Article  MathSciNet  Google Scholar 

  62. Chester M (1963) Second sound in solids. Phys Rev 131:2013

    Article  ADS  Google Scholar 

  63. Francis P (1972) Thermo-mechanical effects in elastic wave propagation: a survey. J Sound Vib 21:181–192

    Article  MATH  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehrdad Sheikhlou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rezazadeh, G., Sheikhlou, M. & Shabani, R. Analysis of bias DC voltage effect on thermoelastic damping ratio in short nano-beam resonators based on nonlocal elasticity theory and dual-phase-lagging heat conduction model. Meccanica 50, 2963–2976 (2015). https://doi.org/10.1007/s11012-015-0171-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-015-0171-7

Keywords

Navigation