Skip to main content
Log in

The effect of mixed boundary conditions on the stability behavior of heterogeneous orthotropic truncated conical shells

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

The prime aim of the present study is to present analytical formulations and solutions for the stability analysis of heterogeneous orthotropic truncated conical shell subjected to external (lateral and hydrostatic) pressures with mixed boundary conditions using the Donnell shell theory. The mixed boundary conditions are as follows: at one end of FGM truncated conical shell is a sleeve that prevents its longitudinal displacement and rotation, and the other end is a freely support. The basic equations of heterogeneous orthotropic truncated conical shells are derived and solved applying the Galerkin’s method for the two cases of mixed boundary conditions using new approximation functions. Then the expressions for dimensionless critical external pressures are obtained. The results are compared and validated with the results available in the literature. Finally, a detailed parametric study is conducted to study the effect of heterogeneity, material orthotropy and mixed boundary conditions on the critical external pressures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Widera OE, Chung SW (1972) A theory for non-homogenous anisotropic cylindrical shells. J Compos Mater 6:14–30

    Article  Google Scholar 

  2. Lomakin VA (1976) The elasticity theory of non-homogeneous materials. Nauka, Moscow (in Russian)

    Google Scholar 

  3. Delale F, Erdogan F (1983) The crack problem for a non-homogeneous plane. J Appl Mech 50:609–614

    Article  Google Scholar 

  4. Awrejcewicz J, Krysko VA (2008) Theory of non-homogeneous shells. Chapter in the book; chaos in structural mechanics. Springer, Berlin, pp 15–40

    Google Scholar 

  5. Zenkour AM, Fares ME (1999) Non-homogeneous response of cross-ply laminated elastic plates using a higher-order theory. Compos Struct 44:297–305

    Article  Google Scholar 

  6. Kawamura R, Haung D, Tanigawa Y (2001) Thermo-elastic deformation and stress analyses of an orthotropic non-homogeneous rectangular plate. In: Proceedings of the fourth international congress on thermal stresses, pp 189–192

  7. Sofiyev AH, Schnack E (2003) The buckling of cross-ply laminated non-homogeneous orthotropic composite conical thin shells under a dynamic external pressure. Acta Mech 162:29–40

    Article  Google Scholar 

  8. Ieşan D, Quintanilla R (2007) On the deformation of inhomogeneous orthotropic elastic cylinders. Eur J Mech Solids 26:999–1015

    Article  Google Scholar 

  9. Grigorenko YM, Grigorenko AY (2013) Static and dynamic problems for anisotropic inhomogeneous shells with variable parameters and their numerical solution (review). Int Appl Mech 49:123–193

    Article  Google Scholar 

  10. Pan E (2003) Exact solution for functionally graded anisotropic composite laminates. J Compos Mater 37:1903–1920

    Article  Google Scholar 

  11. Sladek J, Sladek V, Zhang CH (2005) Stress analysis in anisotropic functionally graded materials by the MLPG method. Eng Anal Bound Elem 29:597–609

    Article  Google Scholar 

  12. Pelletier JL, Vel SS (2006) An exact solution for the steady-state thermoelastic response of functionally graded orthotropic cylindrical shells. Int J Solids Struct 43:1131–1158

    Article  Google Scholar 

  13. Ramirez F, Heyliger PR, Pan E (2006) Static analysis of functionally graded elastic anisotropic plates using a discrete layer approach. Compos B 37:10–20

    Article  Google Scholar 

  14. Ootao Y, Tanigawa Y (2007) Three-dimensional solution for transient thermal stresses of an orthotropic functionally graded rectangular plate. Compos Struct 80:10–20

    Article  Google Scholar 

  15. Wang X, Sudak LJ (2008) Three-dimensional analysis of multi-layered functionally graded anisotropic cylindrical panel under thermomechanical loading. Mech Mater 40:235–254

    Article  Google Scholar 

  16. Kar A, Kanoria M (2009) Generalized thermoelastic functionally graded orthotropic hollow sphere under thermal shock with three-phase-lag effect. Eur J Mech Solids 28:757–767

    Article  Google Scholar 

  17. Peng XL, Li XF (2012) Elastic analysis of rotating functionally graded polar orthotropic disks. Int J Mech Sci 60:84–91

    Article  Google Scholar 

  18. Najafov AM, Sofiyev AH, Kuruoglu N (2013) Torsional vibration and stability of functionally graded orthotropic cylindrical shells on elastic foundations. Meccanica 48:829–840

    Article  MathSciNet  Google Scholar 

  19. Sofiyev AH, Kuruoglu N (2014) Buckling and vibration of shear deformable functionally graded orthotropic cylindrical shells under external pressure. Thin Walled Struct 78:121–130

    Article  Google Scholar 

  20. Serpico J (1963) Elastic stability of orthotropic conical and cylindrical shells subjected to axisymmetric loading conditions. AIAA J 1:128–137

    Article  ADS  Google Scholar 

  21. Singer J, Fershst-Scher R (1964) Buckling of orthotropic conical shells under external pressure. Aeronaut Q, pp 151–168

  22. Wang H, Wang TK (1991) Stability of laminated composite circular conical shells under external pressure. Appl Math Mech 12:1153–1161

    Article  Google Scholar 

  23. Tong L, Tabarrok B, Wang TK (1992) Simple solution for buckling of orthotropic conical shells. Int J Solids Struct 29:933–946

    Article  Google Scholar 

  24. Kardomateas GA, Chung CB (1994) Buckling of thick orthotropic cylindrical shells under external pressure based on non-planar equilibrium modes. Int J Solids Struct 31:2195–2210

    Article  Google Scholar 

  25. Bellout H, Bloom F (2001) Modeling the buckling of rectilinearly orthotropic truncated conical shells. Math Comput Model 34:195–227

    Article  MathSciNet  Google Scholar 

  26. Sofiyev AH (2003) The buckling of an orthotropic composite truncated conical shell with continuously varying thickness subject to a time dependent external pressure. Compos B 34:227–233

    Article  Google Scholar 

  27. Redekop D (2005) Buckling analysis of an orthotropic thin shell of revolution using differential quadrature. Int J Press Vessels Pip 82:618–624

    Article  Google Scholar 

  28. Jabareen M, Sheinman I (2009) Stability of imperfect stiffened conical shells. Int J Solids Struct 46:2111–2125

    Article  Google Scholar 

  29. Shadmehri F, Hoa SV, Hojjati M (2012) Buckling of conical composite shell. Compos Struct 94:787–792

    Article  Google Scholar 

  30. Ruocco E, Mallardo V (2013) Buckling analysis of Levy-type orthotropic stiffened plate and shell based on different strain-displacement model. Int J Non Linear Mech 50:40–47

    Article  Google Scholar 

  31. Sofiyev AH, Omurtag MH, Schnack E (2009) The vibration and stability of orthotropic conical shells with non-homogeneous material properties under a hydrostatic pressure. J Sound Vib 319:963–983

    Article  ADS  Google Scholar 

  32. Sofiyev AH, Kuruoglu N, Halilov HM (2010) The vibration and stability of non-homogeneous orthotropic conical shells with clamped edges subjected to uniform external pressures. Appl Math Model 34:1807–1822

    Article  MathSciNet  Google Scholar 

  33. Shariyat M, Asemi K (2014) Three-dimensional non-linear elasticity-based 3D cubic B-spline finite element shear buckling analysis of rectangular orthotropic FGM plates surrounded by elastic foundations. Compos B 56:934–947

    Article  Google Scholar 

  34. Mansouri MH, Shariyat M (2014) Thermal buckling predictions of three types of high-order theories for the heterogeneous orthotropic plates, using the new version of DQM. Compos Struct 113:40–55

    Article  Google Scholar 

  35. Sofiyev AH, Kuruoglu N (2015) On a problem of the vibration of functionally graded conical shells with mixed boundary conditions. Compos B 70:122–130

  36. Sofiyev AH, Kuruoglu N (2015) On the solution of the buckling problem of functionally graded truncated conical shells with mixed boundary conditions. Compos Struct 123:282–291

  37. Reddy JN (2004) Mechanics of laminated composite plates and shells, theory and analysis, 2nd edn. CRC Press, New York

    Google Scholar 

  38. Volmir AS (1967) Stability of elastic systems (english translation: Foreign tech. division, air force systems command. Wright-Patterson Air Force Base, Ohio, AD628508). Nauka, Moscow

  39. Agenosov LG, Sachenkov AV (1964) Stability and free vibration of thin circumferential cylindrical and conical shells with different boundary conditions. In: Research on the theory of plates and shells. Kazan State Univ., USSR, vol 2, pp 111–126 (in Russian)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. H. Sofiyev.

Appendices

Appendix 1

The coefficients \( \delta_{j} \) and \( \Delta_{j} (j = 1,2, \ldots ,16) \) which are used in Eqs. (7) and (8), as follows:

$$ \begin{aligned} & \delta_{1} = c_{12} ,\quad \delta_{2} = c_{11} - 4c_{12} - c_{22} ,\quad \delta_{3} = 5c_{12} + 3c_{22} - 3c_{11} - c_{21} ,\quad \delta_{4} = 2\left( {c_{11} - c_{22} - c_{12} + c_{21} } \right), \\ & \delta_{5} = c_{21} ,\quad \delta_{6} = c_{11} - 2c_{31} + c_{22} ,\quad \delta_{7} = 4c_{31} - 3c_{11} - c_{22} ,\quad \delta_{8} = 2\left( {c_{11} - c_{31} + c_{21} } \right);\quad \delta_{9} = c_{24} , \\ & \delta_{10} = c_{14} + c_{23} + 2c_{32} ,\quad \delta_{11} = 3c_{14} + c_{23} + 4c_{32} ,\quad \delta_{12} = 2\left( {c_{14} + c_{32} + c_{24} } \right),\quad \delta_{13} = c_{13} , \\ & \delta_{14} = c_{23} - c_{14} + 4c_{13} ,\quad \delta_{15} = c_{24} - 3c_{23} + 3c_{14} - 5c_{13} ,\quad \delta_{16} = 2\left( {c_{23} - c_{14} - c_{24} + c_{13} } \right), \\ & \Delta_{1} = b_{11} ,\quad \Delta_{2} = 2b_{31} + b_{21} + b_{12} ,\quad \Delta_{3} = 4b_{31} + 3b_{21} + b_{12} ,\quad \Delta_{4} = 2(b_{31} + b_{21} + b_{11} ), \\ & \Delta_{5} = b_{22} ,\quad \Delta_{6} = b_{21} - 4b_{22} - b_{12} ,\quad \Delta_{7} = 5b_{22} + 3b_{12} - b_{11} - 3b_{21} , \\ & & & \Delta_{8} = 2b_{21} - 2b_{22} - 2b_{12} + 2b_{11} ,\quad \Delta_{9} = b_{14} ,\quad \Delta_{10} = 2b_{32} - b_{13} - b_{24} , \\ & \Delta_{11} = b_{13} + 3b_{24} - 4b_{32} ,\quad \Delta_{12} = 2b_{32} - 2b_{24} - 2b_{14} ,\quad \Delta_{13} = b_{23} ,\quad \Delta_{14} = b_{13} - b_{24} + 4b_{23} , \\ & \Delta_{15} = b_{14} - 3b_{13} + 3b_{24} - 5b_{23} ,\quad \Delta_{16} = 2b_{13} - 2b_{24} + 2b_{23} - 2b_{14} . \\ \end{aligned} $$
(24)

where the following definitions apply:

$$ \begin{aligned} c_{11} = a_{11}^{1} b_{11} + a_{12}^{1} b_{21} ,\quad c_{12} = a_{11}^{1} b_{12} + a_{12}^{1} b_{22} ,\quad c_{13} = a_{11}^{1} b_{13} + a_{12}^{1} b_{23} + a_{11}^{2} , \hfill \\ c_{14} = a_{11}^{1} b_{14} + a_{12}^{1} b_{24} + a_{12}^{2} ,\quad c_{21} = a_{21}^{1} b_{11} + a_{22}^{1} b_{21} ,\quad c_{22} = a_{21}^{1} b_{12} + a_{22}^{1} b_{22} , \hfill \\ c_{23} = a_{21}^{1} b_{13} + a_{22}^{1} b_{14} + a_{21}^{2} ,\quad c_{24} = a_{21}^{1} b_{14} + a_{22}^{1} b_{13} + a_{22}^{2} ,\quad c_{31} = a_{66}^{1} b_{31} ,\quad c_{32} = a_{66}^{1} b_{32} + a_{66}^{2} , \hfill \\ b_{11} = a_{22}^{0} /L_{0} ,\quad b_{12} = - a_{12}^{0} /L_{0} ,\quad b_{13} = \left( {a_{12}^{0} a_{21}^{1} - a_{11}^{1} a_{22}^{0} } \right)/L_{0} ,\quad b_{14} = \left( {a_{12}^{0} a_{22}^{1} - a_{12}^{1} a_{22}^{0} } \right)/L_{0} , \hfill \\ b_{21} = - a_{21}^{0} /L_{0} ,\quad b_{22} = a_{11}^{0} /L_{0} ,\quad b_{23} = \left( {a_{21}^{0} a_{11}^{1} - a_{21}^{1} a_{11}^{0} } \right)/L_{0} ,\quad b_{24} = \left( {a_{21}^{0} a_{12}^{1} - a_{22}^{1} a_{11}^{0} } \right)/L_{0} , \hfill \\ b_{31} = 1/a_{66}^{0} ,\quad b_{32} = - a_{66}^{1} /a_{66}^{0} ,\quad L_{0} = a_{11}^{0} a_{22}^{0} - a_{12}^{0} a_{21}^{0} . \hfill \\ \end{aligned} $$
(25)

in which

$$ \begin{aligned} a_{11}^{k} & = \frac{{E_{01} h^{k + 1} }}{{1 - \nu_{1} \nu_{2} }}\int\limits_{ - 1/2}^{1/2} {Z^{k} e^{\eta (Z - 0.5)} \, \text{d}Z} ,\quad a_{22}^{k} = \frac{{E_{01} h^{k + 1} }}{{1 - \nu_{1} \nu_{2} }}\int\limits_{ - 1/2}^{1/2} {Z^{k} e^{\eta (Z - 0.5)} \, \text{d}Z{ ,}} \\ a_{12}^{k} & = \nu_{2} a_{11}^{k} = \nu_{1} a_{22}^{k} = a_{21}^{k} ,\quad a_{66}^{k} = 2G_{0} h^{k + 1} \int\limits_{ - 1/2}^{1/2} {Z^{k} e^{\eta (Z - 0.5)} \, \text{d}Z,} \quad k = 0,1,2. \\ \end{aligned} $$
(26)

Appendix 2

The coefficients \( T_{j} (j = 1,2, \ldots ,5) \) and \( P_{jj} (j = 1,2) \), which are contained in Eqs. (11) and (12) are:

$$ \begin{aligned} T_{1} & = \frac{{S_{2} e^{{ - 2x_{0} \lambda }} }}{{32x_{0}^{4} \lambda \left( {2\lambda - 1} \right)\left[ {\left( {2\lambda - 1} \right)^{2} x_{0}^{2} + m^{2} \pi^{2} } \right]}}\left( {m^{2} \pi^{2} e^{{2x_{0} \lambda }} \left\{ {\lambda \left\langle {8\left[ { - 6\lambda^{4} \delta_{1} - 4\left( {\delta_{2} + 3\delta_{1} } \right)\lambda^{3} } \right.} \right.} \right.} \right. \\ & \quad \left. { - \left( {3\delta_{2} + 2\delta_{3} } \right)\lambda^{2} + 2\left( {2\delta_{2} + 3\delta_{1} + \delta_{3} } \right)\lambda + 6\delta_{1} + 3\delta_{4} + 5\delta_{2} + 4\delta_{3} } \right]x_{0}^{4} + \pi^{4} m^{4} \delta_{1} - 2m^{2} \pi^{2} x_{0}^{2} \\ & \quad \left. { \times \left[ {4\lambda^{2} \delta_{1} + 4\left( {\delta_{2} + 5\delta_{1} } \right)\lambda + 2\delta_{3} + 7\delta_{2} + 16\delta_{1} } \right]} \right\rangle \left. { - 2x_{0}^{2} \left( {2\lambda - 1} \right)S_{2} \left[ {\left( {2\lambda - 1} \right)^{2} x_{0}^{2} + m^{2} \pi^{2} } \right]\cot \gamma } \right\} \\ & \quad - \lambda e^{{x_{0} }} \left\langle {32\left[ {\lambda^{3} \delta_{1} + \left( {3\delta_{1} + \delta_{2} } \right)\lambda^{2} } \right.} \right.\left. { + \left( {\delta_{3} + 2\delta_{2} + 3\delta_{1} } \right)\lambda + \delta_{2} + \delta_{3} + \delta_{4} + \delta_{1} } \right]\left( {\lambda + 1} \right)\left( {2\lambda - 1} \right)^{2} x_{0}^{6} \\ & \quad - 8m^{2} \pi^{2} x_{0}^{4} \left[ {14\lambda^{4} \delta_{1} + 4\left( {\delta_{2} - \delta_{1} } \right)} \right.\lambda^{3} - \left( {15\delta_{2} + 2\delta_{3} + 42\delta_{1} } \right)\lambda^{2} - \left( {10\delta_{3} + 4\delta_{4} + 16\delta_{1} + 15\delta_{2} } \right)\lambda \\ & \quad + 4\delta_{2} + 8\delta_{1} + \delta_{3} \left. { - \delta_{4} } \right]\left. { - 2m^{4} \pi^{4} x_{0}^{2} \left[ {\lambda^{2} \delta_{1} + 8\left( {\delta_{2} + 4\delta_{1} } \right)\lambda + 5\delta_{2} + 2\delta_{3} + 7\delta_{1} } \right] + \pi^{6} \delta_{1} m^{6} } \right\rangle \\ & \quad \left. { - 2x_{0}^{2} \cot \gamma \left( {2\lambda - 1} \right)S_{2} \left[ {\left( {2\lambda - 1} \right)^{2} x_{0}^{2} + m^{2} \pi^{2} } \right]\left[ {8\lambda \left( {\lambda + 1} \right)x_{0}^{2} + m^{2} \pi^{2} } \right]} \right) \\ \end{aligned} $$
$$ \begin{aligned} T_{2} & = \frac{{n^{2} S_{2} e^{{ - 2\lambda x_{0} }} }}{{64\left( {2\lambda - 1} \right)x_{0}^{2} \sin^{4} \gamma \left[ {\left( {2\lambda - 1} \right)^{2} x_{0}^{2} + m^{2} \pi^{2} } \right]}}\left( {\pi^{2} m^{2} e^{{2\lambda x_{0} }} \left\{ {\left[ {\left( {3\delta_{7} + 2\delta_{8} } \right.} \right.} \right.} \right.\left. { + 2\lambda \delta_{6} - 2\lambda^{2} \delta_{6} + 4\delta_{6} } \right)x_{0}^{2} \\ & \quad \left. { - 0.5\delta_{6} m^{2} \pi^{2} } \right]\cos^{2} \gamma + x_{0}^{2} \left( {2n^{2} \delta_{5} + 2\lambda^{2} \delta_{6} - 3\delta_{7} - 4\delta_{6} - 2\lambda \delta_{6} - 2\delta_{8} } \right)\left. { + 0.5\delta_{6} m^{2} \pi^{2} } \right\} \\ & \quad - e^{{x_{0} }} \left\langle {\left\{ {4\left( {2\lambda - 1} \right)^{2} x_{0}^{4} \left[ {\lambda^{2} \delta_{6} + \left( {2\delta_{6} + \delta_{7} } \right)\lambda + \delta_{6} + \delta_{8} + \delta_{7} } \right]} \right.} \right. + m^{2} x_{0}^{2} \pi^{2} \left[ {2\lambda^{2} \delta_{6} + 2\left( {5\delta_{6} + 2\delta_{7} } \right)\lambda } \right. \\ & \quad \left. {\left. { + \delta_{7} + 2\delta_{8} - \delta_{6} } \right] - 0.5\delta_{6} m^{4} \pi^{4} } \right\}\cos^{2} \gamma + 4\left( {2\lambda - 1} \right)^{2} x_{0}^{4} \left[ {n^{2} \delta_{5} - \lambda^{2} \delta_{6} } \right. - \left( {2\delta_{6} + \delta_{7} } \right)\lambda \,\left. { - \delta_{7} - \delta_{8} - \delta_{6} } \right] \\ & \quad + \pi^{2} m^{2} x_{0}^{2} \left[ {2n^{2} \delta_{5} - 2\lambda^{2} \delta_{6} - 2\left( {2\delta_{7} + 5\delta_{6} } \right)} \right.\lambda - \delta_{7} - \delta_{8} \,\left. {\left. {\left. { + \delta_{6} } \right] + 0.5\delta_{6} m^{4} \pi^{4} } \right\rangle } \right) \\ \end{aligned} $$
$$ \begin{aligned} T_{3} & = - \frac{{e^{{ - 2\lambda x_{0} }} }}{{2x_{0}^{4} \left( {\lambda - 1} \right)\left[ {4\left( {\lambda - 1} \right)^{2} x_{0}^{2} + m^{2} \pi^{2} } \right]\sin^{4} \gamma }}\left[ \frac{1}{8} \right.\pi^{2} m^{2} \left\langle {\left\{ {\left[ {2\left( {2\delta_{12} + \delta_{13} } \right)\lambda^{3} - 3\delta_{12} \lambda^{4} + \left( {\delta_{14} - 3\delta_{13} } \right)\lambda^{2} } \right.} \right.} \right. \\ & \quad \left. { - 2\delta_{14} \lambda + \delta_{15} } \right]x_{0}^{4} + 0.25\pi^{2} m^{2} \left[ {2\left( {\delta_{13} - 2\delta_{12} } \right)\lambda } \right. - 2\delta_{12} \lambda^{2} \left. { + \delta_{14} + \delta_{13} } \right]x_{0}^{2} \left. { + \frac{1}{16}\delta_{12} m^{4} \pi^{4} } \right\}\cos^{4} \gamma \\ & \quad + \left\{ {x_{0}^{4} \left[ 6 \right.\delta_{12} \lambda^{4} - 4\left( {\delta_{13} + 2\delta_{12} } \right)} \right.\lambda^{3} + \left( {6\delta_{13} - n^{2} \delta_{10} } \right.\left. { - 2\delta_{14} } \right)\lambda^{2} \left. { + 2\left( {n^{2} \delta_{10} + 2\delta_{14} } \right)\lambda + \left( {\delta_{16} - \delta_{11} } \right)n^{2} - 2\delta_{15} } \right] \\ & \quad - 0.25\pi^{2} m^{2} x_{0}^{2} \left[ {4\left( {\delta_{13} - 2\delta_{12} } \right)\lambda - 4\delta_{12} \lambda^{2} \left. {\left. { + n^{2} \delta_{10} + 2\delta_{13} + 2\delta_{14} } \right] - 0.125\delta_{12} m^{4} \pi^{4} } \right\}\cos^{2} \gamma } \right. \\ & \quad + x_{0}^{4} \left[ {2\left( {2\delta_{12} + \delta_{13} } \right)} \right.\lambda^{3} - 3\delta_{12} \lambda^{4} + \left( {n^{2} \delta_{10} - 3\delta_{13} } \right.\,\left. {\left. { + \delta_{14} } \right)\lambda^{2} - 2\left( {\delta_{14} + n^{2} \delta_{10} } \right)\lambda + n^{4} \delta_{9} + \left( {\delta_{11} - \delta_{16} } \right)n^{2} + \delta_{15} } \right] \\ & \quad \left. { + 0.25\pi^{2} m^{2} x_{0}^{2} \left[ {2\left( {\delta_{13} - 2\delta_{12} } \right)\lambda - 2\delta_{12} \lambda^{2} + \delta_{13} + \delta_{14} + n^{2} \delta_{10} } \right] + 0.125\delta_{12} m^{4} \pi^{4} } \right\rangle e^{{2\lambda x_{0} }} \\ & \quad + \left\langle {\left\{ {\lambda \left( {\lambda - 1} \right)} \right.^{2} \left( {\delta_{13} \lambda^{2} - \delta_{12} \lambda^{3} + \delta_{14} \lambda - \delta_{15} } \right)x_{0}^{6} - 0.125\pi^{2} m^{2} x_{0}^{4} \left[ {2\left( {\delta_{13} + 10\delta_{12} } \right)\lambda^{3} - 7\delta_{12} \lambda^{4} } \right.} \right. + 2\delta_{14} - \delta_{15} \\ & \quad \left. { - \left( {9\delta_{13} + 12\delta_{12} + \delta_{14} } \right)\lambda^{2} + 2\left( {\delta_{15} - \delta_{14} + 3\delta_{13} } \right)\lambda \,\,} \right] - \frac{1}{32}\pi^{4} m^{4} \left( {2\delta_{12} - 8\delta_{12} \lambda^{2} } \right. + \delta_{14} \left. { - \delta_{13} + 4\delta_{13} \lambda } \right)x_{0}^{2} \\ & \quad \left. { - \frac{1}{128}\delta_{12} m^{6} \pi^{6} } \right\}\cos^{4} \gamma + x_{0}^{6} \left\{ {\left( {\lambda - 1} \right)^{2} \left[ {2\delta_{12} \lambda^{4} - 2\delta_{13} \lambda^{3} - \left( {n^{2} \delta_{10} } \right.} \right.} \right.\left. { + 2\delta_{14} } \right)\lambda^{2} + \left( {n^{2} \delta_{11} + 2\delta_{15} } \right)\lambda \left. { - n^{2} \delta_{16} } \right] \\ & \quad - 0.125\pi^{2} m^{2} x_{0}^{4} \left\{ {4\left( {\delta_{13} + 10\delta_{12} } \right)\lambda^{3} } \right. - \left( {18\delta_{13} + n^{2} \delta_{10} + 24\delta_{12} + 2\delta_{14} } \right)\lambda^{2} - 14\delta_{12} \lambda^{4} + 4\delta_{14} - 2\delta_{15} \\ & \quad + 2\left[ {\left( {\delta_{11} - \delta_{10} } \right)n^{2} + 2\delta_{15} - 2\delta_{14} + 6\delta_{13} } \right]\lambda \left. { + \left( {2\delta_{10} - \delta_{16} - \delta_{11} } \right)n^{2} } \right\} \\ & \quad - \frac{1}{4}\pi^{4} m^{4} x_{0}^{2} \left( {2\delta_{12} - 8\delta_{12} \lambda^{2} + \delta_{14} } \right.\left. { - \delta_{13} + 0.5n^{2} \delta_{10} + 4\delta_{13} \lambda } \right)\left. { - \frac{1}{16}\delta_{12} m^{6} \pi^{6} } \right\}\cos^{2} \gamma \\ & \quad + \left( {\lambda - 1} \right)^{2} x_{0}^{6} \left[ {\delta_{13} \lambda^{3} - \delta_{12} \lambda^{4} + } \right.\left( {\delta_{14} + n^{2} \delta_{10} } \right)\lambda^{2} \,\left. { - \left( {n^{2} \delta_{11} + \delta_{15} } \right)\lambda + n^{2} \left( {\delta_{16} - \delta_{9} n^{2} } \right)} \right] \\ & \quad - 0.125\pi^{2} m^{2} x_{0}^{4} \left\{ { - 7\delta_{12} \lambda^{4} + \left( {\delta_{13} + 10\delta_{12} } \right)\lambda^{3} } \right.\, + \left( { - 12\delta_{12} - 9\delta_{13} - n^{2} \delta_{10} - \delta_{14} } \right)\lambda^{2} + n^{4} \delta_{9} \\ & \quad \left. { + 2\left[ {\left( {\delta_{11} - \delta_{10} } \right)n^{2} + \delta_{15} - \delta_{14} + 3\delta_{13} } \right]\lambda + \left( {2\delta_{10} - \delta_{16} - \delta_{11} } \right)n^{2} + 2\delta_{14} - \delta_{15} } \right\} \\ & \quad - \frac{1}{32}\pi^{4} m^{4} x_{0}^{2} \left( {4\delta_{13} \lambda + 2\delta_{12} + n^{2} \delta_{10} - 8\delta_{12} \lambda^{2} + \delta_{14} } \right.\left. {\left. {\left. { - \delta_{13} } \right) - \frac{1}{128}\delta_{12} m^{6} \pi^{6} } \right\rangle e^{{2x_{0} }} } \right] \\ \end{aligned} $$
$$ \begin{aligned} T_{4} & = - \frac{{3S_{2}^{2} e^{{ - 2x_{0} \lambda }} }}{{4\lambda x_{0}^{4} \sin^{4} \gamma \left( {4\lambda^{2} x_{0}^{2} + m^{2} \pi^{2} } \right)}}\left( {\left\langle {\left\{ {\left[ {3\Delta_{8} \lambda^{4} + \left( {8\Delta_{8} + 2\Delta_{7} } \right)\lambda^{3} } \right.} \right.} \right.} \right. + \left( {3\Delta_{7} + 6\Delta_{8} + \Delta_{6} } \right)\lambda^{2} - \Delta_{7} - \Delta_{8} \\ & \quad \left. { - \Delta_{6} - \Delta_{5} } \right]x_{0}^{4} + 0.25m^{2} \pi^{2} x_{0}^{2} \left[ {2\Delta_{8} \lambda^{2} + 2\left( {\Delta_{7} + 4\Delta_{8} } \right)\lambda } \right.\left. { + \Delta_{6} + 3\Delta_{7} + 6\Delta_{8} } \right]\left. { - \frac{1}{16}\Delta_{8} m^{4} \pi^{4} } \right\}\cos^{4} \gamma \\ & \quad + \left\{ {x_{0}^{4} \left[ { - 6\Delta_{8} \lambda^{4} - 4\left( {4\Delta_{8} + \Delta_{7} } \right)} \right.} \right.\lambda^{3} + \left( {\Delta_{2} n^{2} - \Delta_{6} - 12\Delta_{8} - 6\Delta_{7} } \right)\lambda^{2} + 2\Delta_{7} + \left( {\Delta_{3} - 1.5\Delta_{2} - \Delta_{4} } \right)n^{2} \\ & \quad + 2\Delta_{8} + 2\Delta_{6} \left. { + 2\Delta_{5} } \right] - 0.25\left[ {4\Delta_{8} \lambda^{2} + 4\left( {\Delta_{7} + 4\Delta_{8} } \right)\lambda + 12\Delta_{8} - \Delta_{2} n^{2} + 2\Delta_{6} + 6\Delta_{7} } \right]m^{2} \pi^{2} x_{0}^{2} \\ & \quad \left. { + 0.125\Delta_{8} m^{4} \pi^{4} } \right\}\cos^{2} \gamma + \left[ {3\Delta_{8} \lambda^{4} + \left( {8\Delta_{8} + 2\Delta_{7} } \right)} \right.\lambda^{3} + \left( { - \Delta_{2} n^{2} + \Delta_{6} + 3\Delta_{7} + 6\Delta_{8} } \right)\lambda^{2} - \Delta_{8} - \Delta_{7} \\ & \quad \left. { - n^{4} \Delta_{1} + \left( {\Delta_{2} + \Delta_{4} - \Delta_{3} } \right)n^{2} - \Delta_{6} - \Delta_{5} } \right]x_{0}^{4} + 0.25\left[ {2\Delta_{8} \lambda^{2} } \right. + 2\left( {\Delta_{7} + 4\Delta_{8} } \right)\lambda + 3\Delta_{7} - \Delta_{2} n^{2} \\ & \quad \left. {\left. { + 6\Delta_{8} + \Delta_{6} } \right]m^{2} \pi^{2} x_{0}^{2} - \frac{1}{16}\Delta_{8} m^{4} \pi^{4} } \right\rangle m^{2} \pi^{2} e^{{2x_{0} \lambda }} \\ & \quad + \left\{ {8\lambda^{2} \left( {\lambda + 1} \right)x_{0}^{6} \left[ {\Delta_{8} \lambda^{3} + \left( {\Delta_{7} + 3\Delta_{8} } \right)\lambda^{2} + \left( {\Delta_{6} + 2\Delta_{7} + 3\Delta_{8} } \right)\lambda + \Delta_{5} + \Delta_{7} + \Delta_{8} + \Delta_{6} } \right]} \right. \\ & \quad - m^{2} \pi^{2} x_{0}^{4} \left[ {7\Delta_{8} \lambda^{4} + \left( {2\Delta_{7} + 9\Delta_{8} } \right)} \right.\lambda^{3} - \left( {3\Delta_{7} + \Delta_{6} + 6\Delta_{8} } \right)\lambda^{2} - 2\left( {2\Delta_{6} + 3\Delta_{7} + \Delta_{5} + 4\Delta_{8} } \right)\lambda - \Delta_{8} \\ & \quad \left. { - \Delta_{6} - \Delta_{5} - \Delta_{7} } \right] - 0.25m^{4} \pi^{4} x_{0}^{2} \left[ {8\Delta_{8} \lambda^{2} + 4\left( {\Delta_{7} + 4\Delta_{8} } \right)\lambda + \Delta_{6} + 6\Delta_{8} + 3\Delta_{7} } \right]\left. { + \frac{1}{48}\Delta_{8} m^{6} \pi^{6} } \right\}\cos^{4} \gamma \\ & \quad - \left\langle 8 \right.\lambda^{2} x_{0}^{6} \left\{ {2\Delta_{8} \lambda^{4} + 2\left( {\Delta_{7} + 4\Delta_{8} } \right)\lambda^{3} + \left( {2\Delta_{6} + 6\Delta_{7} - \Delta_{2} n^{2} + 12\Delta_{8} } \right)} \right.\lambda^{2} + \left( {\Delta_{3} - \Delta_{4} - \Delta_{2} } \right)n^{2} + 2\Delta_{6} \\ & \quad + \left[ {8\Delta_{8} + 6\Delta_{7} + \left( {\Delta_{3} - 2\Delta_{2} } \right)n^{2} + 2\Delta_{5} + 4\Delta_{6} } \right]\lambda + 2\Delta_{8} + 2\Delta_{7} \left. { + 2\Delta_{5} } \right\} + m^{2} \pi^{2} \left\{ {\left( {4\Delta_{7} + 16\Delta_{8} } \right)\lambda^{3} } \right. \\ & \quad + 14\Delta_{8} \lambda^{4} \, + \left( {\Delta_{2} n^{2} - 12\Delta_{8} - 6\Delta_{7} - 2\Delta_{6} } \right)\lambda^{2} + \left[ {\left( {4\Delta_{2} - 2\Delta_{3} } \right)n^{2} - 16\lambda^{3} \left. { - 12\Delta_{7} - 8\Delta_{6} - 4\Delta_{5} } \right]\lambda } \right. \\ & \quad - 2\Delta_{8} - 2\Delta_{7} + \left( {\Delta_{4} - \Delta_{3} + \Delta_{2} } \right)n^{2} \left. { - 2\Delta_{6} - 2\Delta_{5} } \right\} - 0.25\left[ {16\Delta_{8} \lambda^{2} + 8\left( {\Delta_{7} + 4\Delta_{8} } \right)\lambda + 12\Delta_{8} } \right. + 2\Delta_{6} \\ & \quad \left. { + 6\Delta_{7} - \Delta_{2} n^{2} } \right]m^{4} \pi^{4} x_{0}^{2} \left. { + 0.125\Delta_{8} m^{6} \pi^{6} } \right\rangle \cos^{2} \gamma + 8\lambda^{2} \left\{ {\Delta_{8} \lambda^{4} + \left( {\Delta_{7} + 4\Delta_{8} } \right)} \right.\lambda^{3} \left( {\Delta_{6} + 3\Delta_{7} + 6\Delta_{8} } \right. \\ & \quad \left. { - \Delta_{2} n^{2} } \right)\lambda^{2} + \left[ {4\Delta_{8} } \right. + 3\Delta_{7} + \left( {\Delta_{3} - 2\Delta_{2} } \right)n^{2} \left. { + \Delta_{5} + 2\Delta_{6} } \right]\lambda + \Delta_{8} + \Delta_{7} + n^{4} \Delta_{1} + \left( {\Delta_{3} - \Delta_{4} - \Delta_{2} } \right)n^{2} \\ & \quad \left. { + \Delta_{6} + \Delta_{5} } \right\}x_{0}^{6} - m^{2} \pi^{2} x_{0}^{4} \left\{ {7\Delta_{8} \lambda^{4} + \left( {2\Delta_{7} + 8\Delta_{8} } \right)\lambda^{3} + \left( {\Delta_{2} n^{2} - \Delta_{6} - 6\Delta_{8} - 3\Delta_{7} } \right)} \right.\lambda^{2} - 2\left[ 4 \right.\Delta_{8} + 3\Delta_{7} \\ & \quad \left. { - \left( {2\Delta_{2} - \Delta_{3} } \right)n^{2} + \Delta_{5} + 2\Delta_{6} } \right]\lambda - \Delta_{8} - \Delta_{7} - n^{4} \Delta_{1} + \left( {\Delta_{2} + \Delta_{4} - \Delta_{3} } \right)n^{2} \left. { - \Delta_{6} - \Delta_{5} } \right\} \\ & \quad - 0.25m^{4} \pi^{4} x_{0}^{2} \left[ {8\Delta_{8} \lambda^{2} + 4\left( {\Delta_{7} + 4\Delta_{8} } \right)\lambda + 6\Delta_{8} + \Delta_{6} - \Delta_{2} n^{2} + 3\Delta_{7} } \right]\left. { + \frac{1}{16}\Delta_{8} m^{6} \pi^{6} } \right) \\ \end{aligned} $$
$$ \begin{aligned} T_{5} &= - \frac{{S_{2} e^{{ - 2\lambda x_{0} }} }}{{2x_{0}^{4} \left( {2\lambda - 1} \right)\left[ {\left( {2\lambda - 1} \right)^{2} x_{0}^{2} + m^{2} \pi^{2} } \right]\sin^{4} \gamma }}\left[ {m^{2} \left\langle {\left\{ {x_{0}^{4} \left[ { - 3\Delta_{16} \lambda^{4} + \left( {2\Delta_{15} } \right.} \right.} \right.} \right.} \right.\left. { + 2\Delta_{16} } \right)\lambda^{3} - \Delta_{14} \lambda \\ & \quad \left. { - 0.5\Delta_{13} + \left( {\Delta_{14} - 1.5\Delta_{15} } \right)\lambda^{2} } \right] + 0.25m^{2} \pi^{2} x_{0}^{2} \left[ { - 2\lambda^{2} \Delta_{16} + \left( {2\Delta_{15} - 2\Delta_{16} } \right)\lambda + \Delta_{14} } \right.\left. { + 0.5\Delta_{15} } \right] \\ & \quad \left. { + \frac{1}{16}\Delta_{16} m^{4} \pi^{4} } \right\}\cos^{4} \gamma + \left\{ {x_{0}^{4} \left[ {6\Delta_{16} \lambda^{4} - 4\left( {\Delta_{15} + \Delta_{16} } \right)\lambda^{3} + } \right.} \right.\left( {3\Delta_{15} - 2\Delta_{14} + n^{2} \Delta_{10} } \right)\lambda^{2} + \Delta_{13} \\ & \quad \left. { + \left( {2\Delta_{14} - n^{2} \Delta_{10} } \right)\lambda - \left( {\Delta_{12} + 0.5\Delta_{11} } \right)n^{2} } \right] - m^{2} \pi^{2} x_{0}^{2} \left[ {\left( {\Delta_{15} - \Delta_{16} } \right)\lambda - \lambda^{2} \Delta_{16} - 0.25n^{2} \Delta_{10} } \right. \\ & \quad \left. {\left. { + 0.5\Delta_{14} + 0.5\Delta_{15} } \right] - 0.125\Delta_{16} m^{4} \pi^{4} } \right\}\cos^{2} \gamma + x_{0}^{4} \left[ {2\left( {\Delta_{15} + \Delta_{16} } \right)\lambda^{3} - 3\Delta_{16} \lambda^{4} - \left( {1.5\Delta_{15} } \right.} \right. \\ & \quad \left. {\left. { + n^{2} \Delta_{10} - \Delta_{14} } \right)\lambda^{2} + \left( {n^{2} \Delta_{10} - \Delta_{14} } \right)\lambda + n^{4} \Delta_{9} + \left( {0.5\Delta_{11} + \Delta_{12} } \right)n^{2} - 0.5\Delta_{13} } \right] + 0.25m^{2} \pi^{2} x_{0}^{2} \\ & \quad \left. {\left. { \times \left[ {\Delta_{14} - 2\lambda^{2} \Delta_{16} } \right. + \left( {2\Delta_{15} - 2\Delta_{16} } \right)\lambda - n^{2} \Delta_{10} + 0.5\Delta_{15} } \right] + \Delta_{16} m^{4} \pi^{4} /16} \right\rangle \pi^{2} e^{{2\lambda x_{0} }} \\ & \quad + e^{{x_{0} }} \left\langle {\left\{ {2\left( {2\lambda - 1} \right)^{2} \lambda x_{0}^{6} \left. {\left( {\Delta_{15} \lambda^{2} - \Delta_{16} \lambda^{3} } \right. + \Delta_{14} \lambda + \Delta_{13} } \right) + m^{2} \pi^{2} x_{0}^{4} } \right.} \right.\left[ {7\Delta_{16} \lambda^{4} - 2\left( {5\Delta_{16} + \Delta_{15} } \right)\lambda^{3} } \right. \\ & \quad \left. { + \lambda^{2} \left( {3\Delta_{16} + \Delta_{14} + 4.5\Delta_{15} } \right) + \lambda \left( {2\Delta_{13} + \Delta_{14} - 1.5\Delta_{15} } \right) - 0.5\Delta_{14} - 0.5\Delta_{13} } \right] - 0.25m^{4} \pi^{4} x_{0}^{2} \\ & \quad \times \left( {\Delta_{14} - 0.5\Delta_{15} + 4\lambda \Delta_{15} - 8\lambda^{2} \Delta_{16} } \right.\left. {\left. { + 0.5\Delta_{16} } \right) - \Delta_{16} m^{6} \pi^{6} /16} \right\}\cos^{4} \gamma \\ & \quad + \left\langle {2\left( {2\lambda - 1} \right)^{2} x_{0}^{6} \left[ {2\Delta_{16} \lambda^{4} - 2\Delta_{15} \lambda^{3} - \left( {2\Delta_{14} - n^{2} \Delta_{10} } \right)} \right.} \right.\lambda^{2} \left. { - \left( {2\Delta_{13} - n^{2} \Delta_{11} } \right)\lambda + n^{2} \Delta_{12} } \right] \\ & \quad - m^{2} \pi^{2} x_{0}^{4} \left\{ {14\Delta_{16} \lambda^{4} - 4\left( {5\Delta_{16} + \Delta_{15} } \right)\lambda^{3} + \left( {9\Delta_{15} - n^{2} \Delta_{10} } \right.} \right.\left. {\, + 3\Delta_{16} + \Delta_{14} } \right)\lambda^{2} \\ & \quad + n^{2} \left( {0.5\Delta_{11} - \Delta_{12} } \right.\left. { + 0.5\Delta_{10} } \right) + \left[ {4\Delta_{13} + 2\Delta_{14} - 3\Delta_{15} - \left( {2\Delta_{11} + \Delta_{10} } \right)n^{2} } \right]\lambda \left. { - \Delta_{13} - \Delta_{14} } \right\} \\ & \quad + 0.25m^{4} \pi^{4} x_{0}^{2} \left( {2\Delta_{14} - 16\lambda^{2} \Delta_{16} - n^{2} \Delta_{10} + 8\lambda \Delta_{15} + \Delta_{16} - \Delta_{15} } \right)\left. { + 0.125\Delta_{16} m^{6} \pi^{6} } \right\rangle \cos^{2} \gamma \\ & \quad + 2\left( {2\lambda - 1} \right)^{2} \left[ {\Delta_{15} \lambda^{3} - \Delta_{16} \lambda^{4} + \left( {\Delta_{14} - n^{2} \Delta_{10} } \right)\lambda^{2} + \left( { - n^{2} \Delta_{11} + \Delta_{13} } \right)\lambda \left. { - n^{2} \Delta_{12} - n^{2} \Delta_{9} } \right]x_{0}^{6} } \right. \\ & \quad + m^{2} \pi^{2} x_{0}^{4} \left\{ {7\Delta_{16} \lambda^{4} - 2\left( {5\Delta_{16} + \Delta_{15} } \right)\lambda^{3} + \left( {4.5\Delta_{15} + \Delta_{14} - n^{2} \Delta_{10} + 3\Delta_{16} } \right)\lambda^{2} } \right. - 0.5\Delta_{14} \\ & \quad + \left[ {2\Delta_{13} - \left( {2\Delta_{11} + \Delta_{10} } \right)n^{2} + \Delta_{14} - 1.5\Delta_{15} } \right]\lambda - n^{4} \Delta_{9} + 0.5\left( {\Delta_{10} - 2\Delta_{12} + \Delta_{11} } \right)n^{2} \left. { - 0.5\Delta_{13} } \right\} \\ & \quad \left. { - 0.25m^{4} \pi^{4} x_{0}^{2} \left( {4\lambda \Delta_{15} - 0.5\Delta_{15} - 8\lambda^{2} \Delta_{16} - n^{2} \Delta_{10} + \Delta_{14} + 0.5\Delta_{16} } \right) - \left. {\Delta_{16} m^{6} \pi^{6} /16} \right\rangle } \right] \\ & \quad - S_{2}^{2} \cot \gamma \left[ {\pi^{2} m^{2} \left( {e^{{2x_{0} \lambda }} - 1} \right) + 8x_{0}^{2} \lambda \left( {\lambda - 1} \right)} \right]e^{{ - 2x_{0} \lambda }} /(16x_{0}^{2} \lambda ) \\ \end{aligned} $$
(27)
$$ \begin{aligned} P_{11} & = - \frac{{e^{{ - x_{0} (1 + 2\lambda )}} S_{2}^{3} \tan \gamma }}{{16x_{0}^{2} \left( {2\lambda + } \right)\left[ {\left( {2\lambda + 1} \right)^{2} x_{0}^{2} + m^{2} \pi^{2} } \right]}}\left\{ {m^{2} \pi^{2} \left[ {2\left( {2\lambda^{2} + 2\lambda - 1} \right)x_{0}^{2} + m^{2} \pi^{2} } \right]e^{{x_{0} (1 + 2\lambda )}} } \right. \\ & \quad + 8x_{0}^{4} \left( {4\lambda^{3} - 3\lambda - 1} \right)\lambda + 4m^{2} \pi^{2} x_{0}^{2} \left( {\lambda^{2} - 3\lambda - 1} \right)\left. { - m^{4} \pi^{4} } \right\} \\ P_{22} & = \frac{{e^{{ - x_{0} (1 + 2\lambda )}} S_{2}^{3} \tan \gamma }}{{4\left( {2\lambda + 1} \right)\left( {x_{0}^{2} (2\lambda + 1)^{2} + m^{2} \pi^{2} } \right)}}\left\langle { - \left\{ {m^{2} \pi^{2} \left[ {1 + e^{{x_{0} (1 + 2\lambda )}} } \right] + 4x_{0}^{2} \lambda (2\lambda + 1)^{2} + 4m^{2} \pi^{2} \lambda } \right\}} \right. \\ & \quad \left. { + 2\frac{{n^{2} }}{{\sin^{2} \gamma }}\left\{ {m^{2} \pi^{2} \left[ {1 - e^{{x_{0} (1 + 2\lambda )}} } \right] + 2\left( {2\lambda + 1} \right)^{2} x_{0}^{2} } \right\}} \right\rangle \\ \end{aligned} $$
(28)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sofiyev, A.H., Huseynov, S.E., Ozyigit, P. et al. The effect of mixed boundary conditions on the stability behavior of heterogeneous orthotropic truncated conical shells. Meccanica 50, 2153–2166 (2015). https://doi.org/10.1007/s11012-015-0151-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-015-0151-y

Keywords

Navigation