Skip to main content
Log in

A nonlinear formulation of piezoelectric shells with complete electro-mechanical coupling

  • Advances in the Mechanics of Composite and Sandwich Structures
  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

A nonlinear piezoelectric shell model capable of accurately expressing the direct and the converse piezoelectric effect is presented. The developed theory is meant to encompass large strains, displacements and rotations that can occur in the shell as a consequence of a complete coupling between the mechanical and the electrical fields. Based on results present in the literature according to which a linear dependence of the electric potential on the shell thickness is not adequate to represent its electrical behavior, a specific structure of the field of admissible displacements is taken into account. Warping functions characterized by an ad-hoc polynomial expansion aimed at expressing their dependence on the shell through-the-thickness coordinate are here considered to describe the shear and the extensional deformability of the shell transverse fibers. Linear constitutive relations for a transversely isotropic continuum are considered. Finally, the governing equations of motion of the shell are obtained via enforcement of the virtual work theorem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Farrar CR, Lieven NAJ, Bement MT (2005) An introduction to damage prognosis. Damage prognosis: for aerospace, civil and mechanical systems. Wiley, Chichester

    Google Scholar 

  2. Gaudenzi P (2009) Smart structures: physical behaviour, mathematical modelling and applications. Wiley, Chichester

    Book  Google Scholar 

  3. Worden K, Farrar CR, Manson G, Park G (2007) The fundamental axioms of structural health monitoring. Proc R Soc A Math Phys Eng Sci 463:1639–1664

    Article  ADS  Google Scholar 

  4. Tiersten HF (1969) Linear piezoelectric plate vibrations. Plenum Press, New York

    Book  Google Scholar 

  5. Rogacheva NN (1994) The theory of piezoelectric shells and plates. CRC Press, Oxford

    MATH  Google Scholar 

  6. D’Ottavio M (2009) Sensitivity analysis of thickness assumptions for piezoelectric plate models. Intell Mater Struct 20:1815–1834

    Article  Google Scholar 

  7. Mindlin RD (1951) Influence of rotatory inertia and shear on flexural motions of isotropic, elastic plates. Appl Mech 18:31–38

    MATH  Google Scholar 

  8. Reissner E (1945) The effect of transverse shear deformation on the bending of elastic plates. Appl Mech 12:68–77

    MathSciNet  MATH  Google Scholar 

  9. Donnell LH (1934) A new theory for the buckling of thin cylinders under axial compression and bending. Trans ASME 56:795–806

    Google Scholar 

  10. Mushtari KM, Galimov KZ (1957) Non-linear theory of thin elastic shells. Academy of Sciences, Beijing

    Google Scholar 

  11. Sanders JL (1963) Nonlinear theories for thin shells. Q Appl Math 21:21–36

    MathSciNet  Google Scholar 

  12. Koiter WT (1966) On the nonlinear theory of thin elastic shells. Proceedings Koninklijke Nederlandse Akademie van Wetenschappen 69:1–54

    MathSciNet  Google Scholar 

  13. Flügge W (1962) Stresses in shells, 2nd edn. Springer, Berlin

    MATH  Google Scholar 

  14. Naghdi PM, Nordgren RP (1963) On the nonlinear theory of elastic shells under the Kirchhoff hypothesis. Q Appl Math 21:49–59

    MathSciNet  MATH  Google Scholar 

  15. Libai A, Simmonds JG (1988) The nonlinear theory of elastic shells, 2nd edn. Academic Press, London

    MATH  Google Scholar 

  16. Reddy JN, Chandrashekhara K (1985) Geometrically non-linear transient analysis of laminated, doubly curved shells. Int J Non-linear Mech 20:79–90

    Article  MATH  Google Scholar 

  17. Reddy JN (1984) Exact solutions of moderately thick laminated shells. Eng Mech 110:794–809

    Article  Google Scholar 

  18. Vlasov BF (1957) On the bending of rectangular thick plate. Trans Mosc State Univ 2:25–31

    MathSciNet  Google Scholar 

  19. Pagano NJ (1970) Exact solutions for rectangular bidirectional composites and sandwich plates. Compos Mater 4:20–34

    Google Scholar 

  20. Bisegna P, Maceri F (1996) An exact three-dimensional solution for simply supported rectangular piezoelectric plates. Appl Mech 63:628–638

    Article  MATH  Google Scholar 

  21. Vel SS, Batra RC (2000) Cylindrical bending of laminated plates with distributed and segmented piezoelectric actuators/sensors. Am Inst Aeronaut Astronaut 38:857–867

    Article  Google Scholar 

  22. Cheng ZQ, Batra RC (2000) Three-dimensional asymptotic analysis of multiple-electroded piezoelectric laminates. Am Inst Aeronaut Astronaut 38:317–324

    Article  Google Scholar 

  23. Kuliov GM, Plotnikova SV (2013) Three-dimensional exact analysis of piezoelectric laminated plates via a sampling surfaces method. Solids ad Struct 50:916–929

    Google Scholar 

  24. Gaudenzi P, Bathe K-J (1995) An iterative finite element procedure for the analysis of piezoelectric continua. Intell Mater Syst Struct 6:266–273

    Article  Google Scholar 

  25. Roccella S, Gaudenzi P, Bathe K-J (2005) On the formulation of a piezoelectric plate model. Intell Mater Syst Struct 6:285–290

    Article  Google Scholar 

  26. Pasquali M, Gaudenzi P (2012) A nonlinear formulation of piezoelectric plates. Intell Mater Syst Struct 23:1713–1723

    Article  Google Scholar 

  27. Podio-Guidugli P (1989) An exact derivation of the thin plate equation. J Elast 22:121–133

    Article  MathSciNet  MATH  Google Scholar 

  28. Reddy JN (2007) Theory and analysis of elastic plates and shells, 2nd edn. CRC Press, London

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michele Pasquali.

Appendix

Appendix

Different quantities are introduced in the paper in a concise form for the sake of its readability. In Eq. (73) the deformation field components are shown. As already pointed out, assuming that \(w^{{\alpha }}=\zeta N^{{\alpha }}\) and \(w^{3}=\zeta (N^{3}-1)\) a Kirchhoff model of shell is obtained. The complete expressions of the deformations \({\varepsilon }_{\alpha \alpha }^{k}\) read:

$$\begin{aligned} {\varepsilon }_{\alpha \alpha }^{k0}= & {} \frac{1}{2}\left( A_{\alpha \alpha }-a_{\alpha \alpha }\right) \end{aligned}$$
(103)
$$\begin{aligned} {\varepsilon }_{\alpha \alpha }^{k1}= & {} \left[ A_{\alpha }^{\gamma }\left( N_{,\alpha }^{\gamma }-N^3b_{\alpha }^{\gamma }\right) a_{\gamma \gamma }+A_{\alpha }^3\left( \frac{\partial N^3}{\partial \xi ^{\alpha }}-N^{\gamma }b_{\alpha \gamma }\right) +b_{\alpha }^{\alpha }a_{\alpha \alpha }\right] \end{aligned}$$
(104)
$$\begin{aligned} {\varepsilon }_{\alpha \alpha }^{k2}= & {} \frac{1}{2}\left[ \left( N_{,\alpha }^{\gamma }-N^3b_{\alpha }^{\gamma }\right) ^2a_{\gamma \gamma }+\left( \frac{\partial N^3}{\partial \xi ^{\alpha }}-N^{\gamma }b_{\alpha \gamma }\right) ^2 -\left( b_{\alpha }^{\alpha }\right) ^2\right] \end{aligned}$$
(105)
$$\begin{aligned} {\varepsilon }_{\alpha \beta }^{k0}= & {} \frac{1}{2}A_{\alpha \beta }\end{aligned}$$
(106)
$$\begin{aligned} {\varepsilon }_{\alpha \beta }^{k1}&= \frac{1}{2}\left[ A_{\alpha }^{\gamma }\left( N_{,\beta }^{\gamma }-N^3b_{\beta }^{\gamma }\right) a_{\gamma \gamma }\right. \\&\quad +\,A_{\beta }^{\gamma }\left( N_{,\alpha }^{\gamma }-N^3b_{\alpha }^{\gamma }\right) a_{\gamma \gamma }+A_{\alpha }^3\left( \frac{\partial N^3}{\partial \xi ^{\beta }}-N^{\gamma }b_{\beta \gamma }\right) \\&\quad \left. +\,A_{\beta }^3\left( \frac{\partial N^3}{\partial \xi ^{\alpha }}-N^{\gamma }b_{\alpha \gamma }\right) \right] \end{aligned}$$
(107)
$$\begin{aligned} {\varepsilon }_{\alpha \beta }^{k2}&= \frac{1}{2}\left[ \left( N_{,\alpha }^{\gamma }-N^3b_{\alpha }^{\gamma }\right) \left( N_{,\beta }^{\gamma }-N^3b_{\beta }^{\gamma }\right) a_{\gamma \gamma }\right. \\&\quad +\,\left. \left( \frac{\partial N^3}{\partial \xi ^{\alpha }}-N^{\gamma }b_{\alpha \gamma }\right) \left( \frac{\partial N^3}{\partial \xi ^{\beta }}-N^{\gamma }b_{\beta \gamma }\right) \right] \end{aligned}$$
(108)

where the \((\cdot )_{,}\) sign denotes covariant differentiation. It is worth noticing that different well-known formulations for the shell deformation field (based on Kirchhoff hypotheses) can be obtained through a straightforward linearization of the above expressions. If it is assumed that

$$\begin{aligned} {{\varvec{R}}}_o={{\varvec{r}}}_o+\varDelta {{\varvec{r}}}_o \end{aligned}$$
(109)

where \(\varDelta {{\varvec{r}}}_o\) is an infinitesimal displacement vector, the following holds

$$\begin{aligned} {\varepsilon }_{{\alpha }{\alpha }}^{k0}= & {} \frac{\partial \varDelta {{\varvec{r}}}_o}{\partial \xi ^{{\alpha }}}\cdot {{\varvec{a}}}_{{\alpha }}\end{aligned}$$
(110)
$$\begin{aligned} {\varepsilon }_{{\alpha }{\beta }}^{k0}= & {} \frac{1}{2}\left( \frac{\partial \varDelta {{\varvec{r}}}_o}{\partial \xi ^{{\alpha }}}\cdot {{\varvec{a}}}_{{\beta }} +\frac{\partial \varDelta {{\varvec{r}}}_o}{\partial \xi ^{{\beta }}}\cdot {{\varvec{a}}}_{{\alpha }}\right) \end{aligned}$$
(111)

representing the linear part of the Green–Lagrange strain tensor. The \({{\varvec{N}}}\) vector normal to the deformed shell midsurface can be written in terms of the infinitesimal displacement vector \(\varDelta {{\varvec{r}}}_o\) as

$$\begin{aligned} {{\varvec{N}}}= & {} \frac{({{\varvec{a}}}_1+\frac{\partial \varDelta {{\varvec{r}}}_o}{\partial \xi ^1}) \times ({{\varvec{a}}}_2+\frac{\partial \varDelta {{\varvec{r}}}_o}{\partial \xi ^2})}{\sqrt{\Vert ({{\varvec{a}}}_1+\frac{\partial \varDelta {{\varvec{r}}}_o}{\partial \xi ^1}) \Vert ^2\Vert ({{\varvec{a}}}_2+\frac{\partial \varDelta {{\varvec{r}}}_o}{\partial \xi ^2})\Vert ^2}} \\&\quad \frac{}{\overline{-[({{\varvec{a}}}_1+\frac{\partial \varDelta {{\varvec{r}}}_o}{\partial \xi ^1}) \cdot ({{\varvec{a}}}_2+\frac{\partial \varDelta {{\varvec{r}}}_o}{\partial \xi ^2})]^2}} \end{aligned}$$
(112)

and, consequently

$$\begin{aligned} {{\varvec{N}}}\sim {{\varvec{n}}}+\varDelta {{\varvec{n}}}\end{aligned}$$
(113)

with

$$\begin{aligned} \varDelta {{\varvec{n}}}&= \frac{1}{\sqrt{a}}\left( {{\varvec{a}}}_1\times \frac{\partial \varDelta {{\varvec{r}}}_o}{\partial \xi ^2} +\frac{\partial \varDelta {{\varvec{r}}}_o}{\partial \xi ^1}\times {{\varvec{a}}}_2\right) \\&\quad -\,{{\varvec{n}}}\left( \frac{{{\varvec{a}}}_1}{a_{11}}\cdot \frac{\partial \varDelta {{\varvec{r}}}_o}{\partial \xi ^1} +\frac{{{\varvec{a}}}_2}{a_{22}}\cdot \frac{\partial \varDelta {{\varvec{r}}}_o}{\partial \xi ^2}\right) \end{aligned}$$
(114)

The above expressions for the terms \({\varepsilon }_{{\alpha }{\alpha }}^{k1}\) and \({\varepsilon }_{{\alpha }{\beta }}^{k1}\) can be thus rewritten as

$$\begin{aligned} {\varepsilon }_{{\alpha }{\alpha }}^{k1}= & {} \frac{\partial \varDelta {{\varvec{n}}}}{\partial \xi ^{{\alpha }}} \cdot {{\varvec{a}}}_{{\alpha }}-\frac{1}{R_{{\alpha }}}{\varepsilon }_{{\alpha }{\alpha }}^{k0}\end{aligned}$$
(115)
$$\begin{aligned} {\varepsilon }_{{\alpha }{\beta }}^{k1}&= \frac{1}{2}\left[ \left( \frac{\partial \varDelta {{\varvec{n}}}}{\partial \xi ^{{\beta }}}\cdot {{\varvec{a}}}_{{\alpha }}+\frac{\partial \varDelta {{\varvec{n}}}}{\partial \xi ^{{\alpha }}}\cdot {{\varvec{a}}}_{{\beta }}\right) \right. \\&\quad \left. -\,\left( \frac{1}{R_{{\alpha }}}\frac{\partial \varDelta {{\varvec{r}}}_o}{\partial \xi ^{{\beta }}}\cdot {{\varvec{a}}}_{{\alpha }}+\frac{1}{R_{{\beta }}} \frac{\partial \varDelta {{\varvec{r}}}_o}{\partial \xi ^{{\alpha }}}\cdot {{\varvec{a}}}_{{\beta }}\right) \right] \end{aligned}$$
(116)

The choice of retaining different parts in the expression of \(\varDelta {{\varvec{n}}}\) can bring to various formulations [28]. If the whole term \(\varDelta {{\varvec{n}}}\) is neglected, the above expressions simplify into

$$\begin{aligned} {\varepsilon }_{{\alpha }{\alpha }}^{k1}= & {} -\frac{1}{R_{{\alpha }}}{\varepsilon }_{{\alpha }{\alpha }}^{k0}\end{aligned}$$
(117)
$$\begin{aligned} {\varepsilon }_{{\alpha }{\beta }}^{k1}= & {} -\frac{1}{2}\left( \frac{1}{R_{{\alpha }}}\frac{\partial \varDelta {{\varvec{r}}}_o}{\partial \xi ^{{\beta }}}\cdot {{\varvec{a}}}_{{\alpha }}+\frac{1}{R_{{\beta }}}\frac{\partial \varDelta {{\varvec{r}}}_o}{\partial \xi ^{{\alpha }}}\cdot {{\varvec{a}}}_{{\beta }}\right) \end{aligned}$$
(118)

As final remark, it can be demonstrated that higher-order terms (\({\varepsilon }_{{\alpha }{\alpha }}^{k2}\) and \({\varepsilon }_{{\alpha }{\beta }}^{k2}\)) become trivial as consequence of the thin-shell hypothesis (\(\frac{\zeta }{R}\ll 1\)).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pasquali, M., Gaudenzi, P. A nonlinear formulation of piezoelectric shells with complete electro-mechanical coupling. Meccanica 50, 2471–2486 (2015). https://doi.org/10.1007/s11012-015-0144-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-015-0144-x

Keywords

Navigation